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ABSTRACT

This paper presents properties of piecewise cubic B-spline function and Rayleigh-Ritz method to
compute the smallest eigenvales. In order to compute the smallest eigenvalues, Rayleigh quotient
approach is used and four different types of finite element approximating functions corresponding
to the statical deflection curve, spanned by the linearly independent set of piecewise cubic B-spline
functions with equally spaced 5 knots from a partion of [0, 1], each satisfying homogeneous
boundary conditions with constraining effects are used to compute the smallest eigenvalues for a

Sturm-Lionville boundary equations of 2" + A2 =0, 2(0.0)=2(1.0)=0, 0<x<1.0.

1. INTRODUCTION

In 1943, Courant suggested using piecewise linear functions to define the relevant subspaces of
approximate trial functions. Since 1945, Schoenberg first introduced the idea of spline function, Garabedian
and Birkhoff proposed using twice-differentiable piecewise cubic spline functions for the subspaces of
approximate trial functions in 1960. Today numerical method using piecewise polynomiats has become an
active field of mathematics and engineering science. Piecewise cubic B-spline functions are class of
piecewise polynomial functions which satisfy smoothness properties. They have useful properties for
computing, which made them a powerful polynomial functions for numerical approximation, interpolation and
numerical solution for differential equations etc.

In this paper, four different types of finite element approximating functions spanned by piecewise cubic
B-spline functions, each satisfying homogeneous boundary conditions and representing contraining effect of
boundary conditions are used- to compute the smallest eigenvalues for Sturm-Liouville equation.
Rayleigh-quotient approach is used to compute numerical values of the smallest eigenvalues.
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2. PIECEWISE CUBIC B-SPLINE BASIS FUNCTION (C.B.S)

2-1. Properties of C.B.S
CBS B{x) is a piecewise twice continuously differentiable and locally

supported such as shown in Fig. I.

So, it -is" very convenient .to compute using

computer.
4
2
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Fig. 1 Graph of C.B.S Bi(x)

The functions of each subinterval are such as below

Bx'( x) =

—}}T[ (x"xi—z)3] if x E[xi-2, %211

—I;Ig[h3 + 30 x—x,_y) + Sh(x—xi)?—3(x—xi-))"]

Xi+

if x€x;,_1, %]

7}7[!13 + 382 (xi41-%) + 3h(xi+1—x)2—3(xi;+-l_x)3] if x€lx;,24y] (D

‘;—3[ (%i2— 2)°1 if x €[xi41, Xiys)

0 otherwise

where h =X; 7 Xi-y

And the table 1 presents the values of the Bfx) at 5 knots.

Table 1 Values of B/(x) at knots

Xi_g Xio1 Xx; Xiv1 Xi+o

B{x) 0 1 4 1 0 |
Bi(x) 0 3/h 0 —3/h 0
B;(x) 0 6/h? —12/h? 6/h? 0
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2-2 Approximating Functions

In this paper, the finite element approximating functions Uy spanned by the
lineally independent finite set of piecewise cubic B-spline functions B,(x) are assumed
as ;

Uv= 21CB() @

And it is possible to choose different types of Uy for satisfying given boundary
condition. So, it may be rewritten as

Uv= 36 Bl Q)

In this paper, four different types of Uy spanned by the linearly independent set of
piecewise cubic B-spline functions, with equally space knots from O=x;<x;<-: - -
<x5=1.0, each satisfying homogeneous boundary conditions of eq.(9) and representing
constraining effect of boundary condition are assumed as:

Type 1: U, = ch,- Bi(%)

where Bj(x)= B;(x) —4By(x), Bs(x)= Bs(x), By(x)= Bs(x)—4By(x), 4
By(x)= B,(x) —4B,(x), By(x) = Bs(x) —4Bs(x),

Type 2 : U, = jgcj Bj(x)

where Bi(x)= B;(x) —4By(x), B3(x)=B;(x), By(x)= —%—Bs(x)—ZE(x), )
Byx) =3 By(x)~2By(w), Bi(®)= Bs(x)—4Bs(x),

Type 3 : U; = chj Bi(x)

where Bj(x)= B,(x)—4By(x), By(x)= B3(x), By(x)= %Bs(x)—E(x), ©)
By(®) = Bi(%) — By(), Biw= Bs(»—Byx),

Type 4 : U, = ]gc, Bi(x%)

where Bi(x) = B(x)—4By(x), Bs(x)= By(x), By(x)= —é' Bs(x) —% B0,
By(x) =3 Bi(®) — 5 By, Bi()= B () —4By(x) ,
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3. EIGENVALUE ANALYSIS FOR STURM-LIOUVILLE EQUATIONS

The Rayleigh-Ritz(or Galerkin) method has long been applied to compute
approximate eigenvalues and eigenfunctions for Sturm-Liouville equations and other
boundary value problems.

We recall that a Sturm-Liouville equation having homogeneous boundary
condition is defined by a differential equation of the form

W +Au=0, 0<x<1.0 ®
Subject to homogeneous boundary conditions, such as

#(0)=u(1.0)=0 )]
Then, eq.(8) has a sequence of distinct eigenvalues

A Adg * -, (10)
and a corresponding sequence of eigenfunctions.

These eigenvalues are stationary values and the eigenfunctions are critical points for
the Rayleigh quotient R(x) of eq.(8)~eq.(9) :

R(w) = 5((;)1 -
where N(u)=f01'°(u')2dx, D(u)=f01'°u2dx 12)

If ¢,(x) is the eigenfunction corresponding to the smallest eigenvalues A%
then ¢,(x) satisfies eq.(8) for A=A,. We know of course that ¢,(x) = sinmx and
corresponding 4,2 for the Rayleigh quotient is #°. The mode shapes(or eigenfunction)
#; (x) corresponding to the smallest eigenvalue is usually the statical deflection curve
satisfying boundary condition. In this paper, in order to compute the smallest
eigenvalue  A,> numerically, instead of using single eigenfunction ¢,(x) for the

Rayleigh quotient, four different types of finite element approximating functions of
eq.(3) corresponding to the statical deflection curve spanned by finite set of piecewise
cubic B-spline functions satisfying homogeneous boundary conditions are used. The
undetermined coefficients C;’s of four different types of finite element approximating
functions could be determined by solving second order beam-bending differential
equation having homogeneous boundary condition of eq.(13) based on Galerkin finite
element method.

Consider the linear simply supported beam-bending differential equation having
homogeneous boundary condition

Lu(x) = fx) x=Q (13)

u(0)=2(1.0)=0.0 (14)
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2

where L = — -ﬁ , positive definite Syhunetri'c linear differential operator
"~ u(x) = the unknown solution
£ = the domain which the differential equation applies
- _12P 2

P=100Kg/m

L=1.0m , E=10%g/m, I=%m'
Galerkin finite element method in the energy inner product space consists in
finding the approximate solution Uy based on the least squares fit.
Applying Galerkin finite element principle to Eq.(13) using Eq.(3), then following
linear system can be obtained.

g‘fox.o( B (% Fj,(x))C,-dx;" j:‘of(x)B}(x)dx 1<i<N (15)

Combining Eq.(3) (13) and (14), the approximating solution U/ satisfying
boundary conditions can be determined by solving the linear system of Eq.(15) in
terms of C; and then these values are substituted into the Eq.(3) again to form the
approximating solutions.

Values of C,’s obtained solving linear system of eq.(15) are shown as in Table 2 and
substituting these values into eq(4) eq(7). constitute the four finite element
approximating solutions of Fig. 2.

—_—

Table 2 Values of C;

Cl C2 C3 C4 CS
Typel | 0264944 x107%-0.257710 x 10 ~%|0.1438630 x10~% -0.257710 x 10 8| 0.264944 x 10~
Type2 | 0392669 x10~%|-0.129984 x107%/0.1387548 x 10 % -0.129984 x1078| 0.392669 x 10~
Type3 | 0456531 x107°|-0.66121 x107/0.1362007 x10~% -0.66121 x10~7| 0.456531 x10 ¢
Typed | 0488462 x107°-034189 x1077{0.1349237 x107% -0.34189 x10~7| 0.488462 x10~¢
2E-6
. /’;;=ﬂ=:\:§\\ - ==  Typaa
1E-6 - _ ,’f// \\\ . 1
_ - /," \§\\ -
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Fig.2.Solutions by Galerkin finite element method
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4. FINITE ELEMET APPROXIMATING NUMERICAL RESULTS

Consider a Sturm-Liouville equation of eq.(8) having homogeneous boundary
conditions of eq(9). In order to compute the smallest eigenvalue 1,2 by Rayleigh

quotient of eq.(11), four different types of finite elemet approximating of functionw of
eq.(4)~(7) with the values of (; appeared in Table2 were used and four different

values of A,*’s are shown in Table3. Numerical computation of eq.(11) was
performed using the MATLAB.

Table3. Values of 1,°

Analyti

Type nayte Type 1 Type 2 Type 3 Type 4
Value

/112 7°(9.8696) 9.8696 12.9096 16.1540 17.3692

5. CONCLUSION

In this paper, four different types of finite element approximating functions
spanned by piecewise cubic B-spline functions are applied to compute numerically the
smallest eigenvalue. Comparing these approximated values with analytic value and
obtained the following results. Values of the smallest eigenvalue calculated using
piecewise cubic B-spline functions is good approximation to the analytic value of
eigenvalue. And numerical algorithm for computing the smallest eigenvalues based on
Rayleigh quotient for Sturm-Liouville equations having homogeneous boundary
conditions using piecewise cubic B-spline functions is developed. And confirmed that
to constraining effect of around the boundary conditions appears as increasing the
value of eigenvalue.
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