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1. Introduction

The predictions of pressure drop and heat transfer to fluids flowing in
ducts are important in many engineering applications. For fully developed
laminar flow of Newtonian and non-Newtonian power law fluids flow in a
square duct, the solutions are well known for both the classical boundary
conditions of constant wall temperature (CWT) and constant wall heat flux
(CHF) and the pressure drop.

For Newtonian fluids, pressure drop and heat transfer coefficients were
calculated by Shah and London', Rothfus et.alz, etc.. For power law fluids,
ChandrupatlaB, Wheeler and Wissler4, Kozickis, and Kozicki etal’ obtained
those analytically and experimentally.

Non-Newtonian fluids usually have been assumed as power law fluids
in the analysis. But, many non-Newtonian fluids have viscous properties
which are different in the various shear rate ranges.

Although a power law model has been used extensively for calculating
velocity profile and heat transfer coefficient in engineering, it has significant
disadvantages that it only applies to the power law region in the flow curve
and the apparent viscosity at the centeroid of the duct becomes infinite.

A constitutive equation is one that relates the shear stress or apparent
viscosity in a fluid to the shear rate through the rheological properties of the
fluid. A convenient way to depict the constitutive equation is to plot a curve
of apparent viscosity against shear rate. Fig. 1 shows such a graph which is
indicative of the behavior of many purely viscous pseudoplastic fluids. In the
lower shear rate range, the fluid is Newtonian and in the higher shear rate
range the fluids acts as a power law fluid. Between these region is a
transition range.

The present research attempts to correct this situation by presenting a
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solution should have the characteristics that at low velocities (low shear
rates) the Newtonian solution is an asymptote while at large shear rates the
power law solution is an asymptote. In addition, the solution should predict
the appropriate pressure drop and heat transfer behavior in the transition
zone. Finally a parameter is needed to predict the shear rate range in terms
of the operating characteristics of the system.

The purpose of present study is to extend our knowledge analytically by
presenting solutions for fluids having the rheological characteristics illustrated
Fig. 1 and develop the relationships between the friction factor and
Reynolds number and the heat transfer coefficients for a Modified Power
Law fluid. For a circular tube (Brewster and Irvine'), and concentric annulus
( Capobianchi and Irvine®) such solutions are available.

When using a particular constitutive equation, it is necessary to
determine that the equation correctly describes the relation between the
apparent viscosity and the shear rate for the particular fluid being considered.
Thus it is required to measure the rheological properties in the constitutive
equation and compare the equation of predictions with the experimental values
of the apparent viscosity vs. the shear rate. This was done for the CMC
(Sodium Carboxymethyl Cellulose) solutions by Park’.

2. Analysis

A  number of constitutive equation can describe the apparent
viscous-shear rate relation for fluids such as shown in Figure 1. A
convenient and useful equation is the "modified power law model” which to
the authors’ knowledge was first used by Dunleavy and Middleman'®.

N.= (1)

VI
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1+———K 7
Inspection of Equation(l) reveals that at low rates ( 7,/K 71_”<<1) the
apparent viscosity becomes equal to 7, and the fluid is operating in the

Newtonian region of Figure 1. At higher shear rates ( 7,/K }'1_n>>1) the

fluid becomes a power law fluid where 7,=K }'1—". At intermediate shear

rates, there is a transition zone. An additional advantages of the modified
power law over constitutive equations such as Ellis, Sutterby, Cross, etc., is
that the familiar Newtonian and power law Reynolds are retained in the
analysis.
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Velocity Prdfile
For infinite parallel plates as shown in Figure 2, the fully developed shear
stress field is described by the momentum equation.
_d duy___dp
The following dimensionless quantities now be defined
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For Newtonian fluid, the continuity equation is
- _1 ra
=L [, uay @
Dimensionless form of Equation(4) becomes
1
fo utdyt =1 (5)
Since 7,= 7y, Equation(2) becomes
dFu" _ . Re, dutt
a’y +2 2 » dy+2 - 1 (6)
Equation(5) becomes
1
o+ 2
\fO U dy - fa Reg (7)

For a modified power law fluid, Equation(2) may be written in dimensionless
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form as

d v dutt
with boundary conditions
2t (1)=0, «*"(0)=0

The continuity equation remains the same as Equation(7).

n. = 1+B — (9)

g (Lo fee)' Ty

The parameter £ is the shear rate parameter that determines whether the
fluid system is operating in the Newtonian, transition or power law regions.
As B becomes small, Rey approaches the Newtonian Reynolds number Re

and as B becomes large, Rejy approaches the power law Reynolds number
Re .

Energy Equation(CHF)
The energy equation for constant heat flux can be written as
2
PR & oL (10)

= CpU
ay2 P 4 ax

with boundary conditions
Na)=T,, TO=0
The temperature field is fully developed when

F) -7, |
PG e ok (1)
where & = const.
_ aT o7, aT,,_ 3Ty, |
(Tb Tw)( dx ax ) (T Tw)( 3x )"'0

From ¢, = W T,— T4 = const.

aT, dT,
dx dx

From Equation (11)
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.. . . T—-T
Defining a dimensionless temperature, T =—"7%
Tb - Tw
becomes
ATt
dy+2 = - u+ Nua

with boundary conditions

TH(1)=0, T " (0)=0

+
Defining new dimensionless temperature, T = —TVZ;_
a
becomes
T _ —ut
dy+2

with boundary conditions

T ) =0, T (0)=0

From the definition of bulk temperature

-1 [
T,= uafouTa’y,

Ve o+ 1
fou T dy " Nu,

’

Equation(10)

(12)

Equation(12)

(13)

(14)

From Equation(13) and (14), the Nusselt number for constant heat flux can

be obtained.

Energy Equation (CWT)
2 TIT-Ty _
oz T—1,) =0
From T, = const,

aT T_Tw aTb

ox  T,—T, ox
Equation (10) becomes

2 et

‘fzfz = —u* T*Nu,

with boundary conditions
TH(D=0, T (0)=

<

(15)
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Integrating Equation(lS) then

1 g2t _ Vo +
0 ay*? ay* fo u T Nu,dy™ = —Nu,
oT+ aTt + '
— - = = T7(1) = — Nu, 16
rria Il I o) ” (16)

From Equation(15) and (16), the Nusselt number for constant wall
temperature can be obtained. '

1 n i ion
The graphical result of the calculations discussed above are shown in
Figure 45 and 6. As expected, the numerical solutions at small values of f
approach the Newtonian analytical solutions.

folRe, = 6
Nucmr = 2.06
Nucwr = 1,88

The numerical solution at large values of /A approach the power law fluid
analytical solutions''.

fuRe, = 2128 )"

NuCHF = 2. 06( 1+2n )1/3

NuCVW‘_ 188( l+2n)1/3

It is interesting to note that the transition region (approximately
107%° < < 10%% is useful to estimate whether the fluid is a fully
developed Newtonian fluid ( 8 < 107%%) or a fully developed power law fluid
(8= 10%%).

4, Conclusions

Numerical solutions for laminar fully developed flow are presented for the
friction factor time Reynolds number and the Nusselt number (CHF and
CWT) for MPL (Modified Power Law) fluid flowing within infinite parallel
plates.

By using the constitutive equation, solutions are obtained which are



80 %l ol&d &8 A4 AL 20004

applicable over a wide shear rate range of pseudoplastic fluids from the
Newtonian behavior at a lower shear rate range to the power law behavior at
a higher shear rate range. A shear rate parameter can be used for the
prediction of the shear rate range for a specified set of operating conditions.

Nomenclature
a  one half of slot width [m]

¢, specific heat [J/keK]

f.  Darcy friction factor (2% alo u) [-]

h heat transfer coefficient (_JL) [W/m’K]
To—T,

w
k thermal conductivity [W/mK]
K power law consistency [Ns%/m?]
n power law flow index [-]
N  numerical nodal point [-]
Nu. Nusselt number ( ka/k) [-]
? pressure [N/m’]
g, wall heat flux [W/m’]

Re, Newtonian Reynolds number ( pua/7y) [-]
Re, power law Reynolds number (p ;2_"a”/K) -]

Rey; modified Reynolds number ( pua/7*) [-]
temperature (K]

++ 5 :
dimensionless temperature [-]

T
Tt  dimensionless temperature [-]
T

velocity in flow direction [m/s]
u

u
u  duct average velocity [m/s)
u

*  dimensionless velocity in flow direction (z/ ) [-]

u* " dimensionless velocity in flow direction (m) [-]
a F:4

x  coordinate in flow direction [m]
y  coordinate in flow transverse direction [m]

+ . . . . . .
y dimensionless coordinate in flow transverse direction [-]
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Greek symbols
@ thermal diffusivity [m%/s]

B  shear rate parameter (/9='%(—Z)l~") (-]

y shear rate [1/s]
7, apparent viscosity ( z/%) [Ns/m’]
7y zero shear rate viscosity [Ns/m’] [-]

* . . 70 2
7™ reference viscosity (""‘—"1 n /3) [Ns/m]
7" dimensionless viscosity ( 7./7%) [-]

fluid density [kg/m’]
r shear stress [ N/m%

Subscripts

a slot width

b bulk temperature

g generalized Reynolds number
M  modified Reynolds number

w  wall condition

Superscripts

+ - dimensionless quantities

++ dimensionless quantities
" derivative
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Figure 1. Typical Flow Curve of Pseudoplastic Fluid Figure 4. Variation of the fully developed

Nusselt numbers with 8 and n (CHF)
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Figure 2. Coordinate system for parallel plates Figure 5. Variation of the fully developed

Nusselt numbers with 8 and n (CWT)
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Figure 3. Variation of the fully developed

fo. Rey with 8 and n



