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Introduction

Chaos Screw(CS) is one of the successful examples of chaotic system in transport
phenomena and it has practical importance in the polymer extrusion process. We
already proposed a rigorous dynamical system modelling and the related dynamics
concerning perturbed homoclinic orbits, resonance bands, KAM tori. We also showed
how the conformation of these structures is determined by the practical design variables,
e.g. the helix angle, barrier configurations, the adverse pressure gradient [1,2].

In this presentation, we propose useful concepts in quantifying the mixing perfor-
mance and the mixedness of mixture of spatially-periodic continuous dynamical sys-
tems such as the PPM, the Kenics Mixer, and Chaos Screw. Our analysis starts with
analysis of a solution map with its transversality. Then, we deal with some general
mathematical properties of the solution map; flux preservation, orientation preserva-
tion, commutative property and symmetry. Using them, we will give an answer to the
following fundamental question about the CS system as a mixer.

¢ How much volume of fluids is transported from one region to another during one
period?

(Evidently if the system is not chaotic, this kind of transports cannot occur.) The anal-
yses are basically different from those of well-known time-periodic systems, because the
CS dynamical systems do satisfy flux-preserving property, not area-preserving prop-
erty. In addition, we investigate the residence time distribution (RTD), its dependency
on chaotic structures (homoclinic tangle, resonance bands, and KAM tori) and thereby
dependencies on practical design variables.

Kinematic aspects of the solution map

When the axial velocity w(z) does not change its sign in the cross-sectional domain of
interest, say w(z) > 0, one can construct a solution map which is a continuous map
¢ : £ — X such that

X(2) = o(z,20) X0, where z>z and X =(z,y) € L CR% (1)

Y is a cross section identified by the 2z coordinate of the CS system and Xj is the
cross-sectional position (zq,yo) of the initial point located on zg. ¢(2,29) maps the
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initial point (X, zp) to (X, z) along the material line. The solution map (1) is a basic
tool in describing the CS system and there are four purely kinematic properties in this
map which are very important to understand the material transports in the system.
Fluz preservation: A subdomain D C X, is mapped by the solution map to give
another subdomain ¢(z,20)(D) on the X, plane. There is no reason that D and
(2, z0)(D) have the same area, that is, the map is not area-preserving. If we denote
the flux through D by F(D) (and the flux through ¢(z,20)(D) by F(¢(z,20)(D))),
then from the divergence theorem, we have

F(D) = / w(z)dd = w(z)dA = F(p(z 2)(D)), (2)
D w(z,20)(D)

for all z greater than zo and for all the choice of D.

Orientation preservation: From the continuity of (dz/dz), (dy/dz) and their partial
derivatives with respect to z and y, relative ordering of material points under the
solution map cannot be changed in continuous dynamical system. In the mathematical
terms, the determinant of the solution map is always positive.

Symmetries From the symmetry of the velocity fields in CS, the solution map has the

following symmetry:
(2, —20) = Syp(z, 20)Sy. 3)

In this case, Sy is two-dimensional reflection symmetry about y axis, i.e., S, : (z,y) —
(—z,y) and ¢ is the backward solution map which satisfies

p(s,)p(, s) = B2, 8)p(s,t) =4d.,, s>t (4)

Commutative property If we introduce the spatial period of the velocity field, say A, it

is clear that

(A, 0)p(2,0) = p(2,0)p(X,0) = (A + 2,0), (5a)
{p(A,0)}" = p(nA,0), n=+1+2,... (5b)

In general, p(nA+ ¢, ¢o) forms a commutative group and called mapping at a period.
In this kind of mapping, Xp is a fixed point of the mapping w(nA + ¢o, ¢o), if and
only if the orbit a(t) with initial condition zy = (Xo, ¢o) is periodic in the dynamical
system, and the fixed point has the same stability type as that of the corresponding
orbit[3]. Let us define the commutative solution map @(A+ g, ¢o) as the Poincaré map
Fy, of the system. Since it is derived from the solution map, the Poincaré map is also
expected to show flux- and orientation-preservation and to have symmetry structure.
Arguments concerning the flux- and orientation-preservation are quite clear and we
have the symmetry of the Poincaré map

Py = S,P" S, (6)

Transports across distinct regions
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Fig.1 indicates lobe dynamics of homoclinic tangle at ¢ = .5, when helix angle o = 15°
and the fraction of no-barrier zone (perturbation) 8 = 0.05 with the absence of adverse
pressure gradient (x = 0). There are three distinct and bounded regions denoted by
Ao, 1, r the subscripts O, L, R indicating outer, left and right regions, respectively. M
denotes mapping by one period. If we denote F(D) for flux through the region D, we
have the following material transport relations in this case.

Transports between Ap and Agr: Under one iteration of M, the only flux that can be

transported from Ao into Ag is F(Eg). Similarly, under one iteration of M, the only
flux that can be transported from Ag into Ap is F(Dg).

Transports between Ao and Ay: Under one iteration of M, the only flux that can be
transported from Ao into Ay is F(EL). Similarly, under one iteration of M, the only
flux that can be transported from Ay into Ap is F(Dy).

Transports between Ap and Ap: Under one iteration of M, the total flux that can be
transported from Ay into Ag is

FLR= i [f(Mk+2DL N M“IER)] .
k=0

Similarly, under one iteration of M, the total flux that can be transported from Ag
into Ay, is

FaL= i [F(MDrn M7 E,)].

=0

From symmetry, we have the following mass conservation law in this case.

F(ER) + i [f(MWDL N M-lER)] ~ F(Dg) - i [f(MDR N M‘l"EL)] =0.
k=0 =0

Residence-Time Distribution

Distribution of residence times of a passive scalar can be produced by the coupling
between a chaotic cross-sectional flow and the axial flows. In Fig.2(a) each particle
on the z = 1 axis uniquely labels the Lagrangian initial coordinate. Integrating the
dynamical system for a fixed amount of z and final exit time of each particle is plotted
versus its index. At early times, smooth residence-time distribution curve can be found
being due to the difference in velocity in the axia direction. A later times, however,
increaing structure is visible. Adjacent particles have dramatically different final exit
time distributions. Compare it with the Poincaré section Fig.2(b). It illustrates the
hierarchical distribution determined to the dynamical structures. The configuration of
dynamical structure, e.g. resonance bands, KAM tori, are directly determined by the
frequency-ratio distribution which is a function of the real design parameters (the helix
angle, adverse pressure gradient and amount of perturbation) [1].
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28 2: (a) Residence time distribution when a = 15°,% = 0,8 = 0.02 and the corre-
sponding Poincaré section.



