WE{QFRISLI| O TEN DO &

STRUCTURED CODEWORD SEARCH FOR VECTOR
QUANTIZATION

&4

oo et A BE 4l ohp
=7 A A g e

Hong Chae Woo
School of Computer and Comm.
Taegu Univ., Kyungpook, Korea

ABSTRACT

Vector quantization (VQ) is widely used in many high-quality and high-rate data compression applications such as
speech coding, audio coding, image coding and video coding. When the size of a VQ codebook is large, the
computational complexity for the full codeword search method is a significant problem for many applications. A
number of complexity reduction algorithms have been proposed and investigated using such properties of the
codebook as the triangle inequality. This paper proposes a new structured VQ search algorithm that is based on a
multi-stage structure for searching for the best codeword. Even using only two stages, a significant complexity

reduction can be obtained without any loss of quality.

I. INTRODUCTION

Vector quantization (VQ) is a powerful data
compression method that has been widely applied. As
more high-quality and high-rate speech, audio, image,
and video applications have been developed, the
importance of VQ methods has grown significantly.
The development of powerful low-cost computers and
digital signal processing chips has made VQ
applications relatively straightforward, However, there
are still serious storage and complexity problems for
VQ applications that use large size codebooks [1].

A codebook stores codewords (or code vectors) that are
used to encode an input vector, The VQ search
algorithm chooses the codeword that is minimally
distant from the input vector and is the best
representative. The criteria for making the selection is
based upon a distortion measure that is often the
minimum Euclidean distance between the input vector
and the codeword. VQ can be regarded as a mapping
from a &k dimensional input vector set X to the
codecbook C with the same dimension. The encoder of
VQ can be expressed as:

Encoder : X > C
where X ={x,},i=1,...,L, C={c},i=1..,N,

X, is an input vector, there are L input vectors, C,is a

codeword and there are N codewords . The number

N is 2° in which the b bits are allocated for encoding,
The decoding is a simple table look-up routine using
the decoded VQ index. In VQ, the complexity of
encoding is much higher than that of decoding because
of the requirement to find the best (minimum distortion)
codeword. In real-time applications, the reduction of
encoding complexity is often essential.

II. Fast Codeword Search Algorithms

When a codebook has N codewords, and the

dimension of a vector is X, and the minimum mean
square error (MMSE) distortion measure is selected,
the conventional full search algorithm of VQ requires
N x k multiplications, N x(2k —1) additions and

subtractions, and N —1 comparisons. As the
dimension of a vector or the size of a codebook is
increased, these numbers become very large and the full
scarch method is often not viable. A variety of fast
codeword search algorithms for reducing computational
complexity have been designed and studied. The basic
idca of all these algorithms is to reduce the number of
candidate codewords to which the full search routine is
applied by using some form of pre-selection technique.

The partial distortion elimination (PDE) algorithm
rejects the codeword as a candidate for full search if
the partially accumulated distortion of the first J

— 467 —

clements (1< j<k) is larger than the current

minimum distortion in the best codeword search routine
[2]. If the current minimum distortion is near the final
minimum distortion early in the search routine, the
algorithm can be effective. If a prediction of the initial
minimum distortion is included in the PDE algorithm, it
can be more effective. This is called the predictive PDE

[3].

Using the triangle inequality relation, unlikely
codewords can be eliminated as candidates. That is, the
codeword c, is rejected as a candidate if

d(ci’cj) > 2 -dmin

where d(c;,c,) is the distortion measure, C; is the

current best match, and d_, is the current minimum

distortion. Note that the distances between every pair of
codewords in the codebook are calculated and stored,
and this requires an extra memory with N x (N —1)

locations [4].

The partial search partial distortion (PSPD) algorithm
stores the mean of each codeword. Only codewords
whose mean values are in the range from the maximum,

m__ to the minimum, M, are searched. The range

isl
is given as follows:

My =My, + dmm /\/Z
mmin = mxz - dmin /‘\/Z

where m ; is the mean of an input vector X, . The PDE

algorithm is then applied to the codewords in the
specified mean range [5].

In the classified pre-selection method, the codewords
are grouped in clusters. The centroid of each cluster is
stored. Instead of searching over all the codewords, the
method first finds 3 or 4 clusters near the input vector
by computing distances between the input vector and
the cluster centeroids. A full search for the best
codeword is performed on only the codewords
belonging to the pre-selected clusters [6].

A different approach in complexity reduction of VQ is
to search an unconstrained VQ using a constrained
search pattern. Historically, this is done for constrained
VQs (tree-structured VQs, residual VQs, and multi-
stage VQs) with great success, but the associated
constraints on the VQ itself limits the overall
performance. In our approach only the search is
constrained — the VQ codebook is not.

I1IL. Structured Codeword Search
A. Design of Codeword Cluster

2
The design of a VQ codebook is an NP-hard problem
50 that sub-optimal methods are normally used. A well-
known and commonly used algorithm is the Linde-
Buzo-Gray (LBG) codebook design [1]. For a given
training data, the algorithm works as follows:

® Select N initial codewords in the codebook.

® (Cluster the training data around each
codeword using an Euclidean distance
measure. This is called the nearest neighbor
condition.

® Compute the centeroid of each cluster to
create a new codeword.

® Repeat step 2 and 3 until the changes in
codewords are relatively small.

There are many variations of the LBG algorithm for
selecting a good set of initial codewords, reducing the
design complexity, or obtaining a globally optimal
codebook. However, the LBG algorithm is very simple
and it is popular for VQ codebook design even though
it is only locally optimal and it often converges slowly
to a local optimum,

The full search on VQ codebook can be broken into
multi-stage search. This is, in effect, like zooming in on
the best codeword in stages. We call this the multi-stage
fast search (MSFS8) algorithm. Given an input, the
MSFS algorithmn can search for the best matched
codeword more efficiently without introducing
additional distortion. In the MSFS algorithm, there can
be any number of search stages, but two stage structures
were investigated in this research.

Our basic assumption is that we begin with a one-stage
optimal codebook. Our goal is to design a fast search
algorithm that will still find the best codeword without
doing a full search of the whole codebook. In our
technique, we first design a smaller codebook that is
created by using a clustering algorithm on the
codewords of the optimal full VQ codebook. Then,
rather than searching all codewords in the full codebook,
the distance between an input vector and vectors of the
new smaller codebook is first computed, and the nearest
cluster to the input vector is then selected. This is the
first stage. In the second stage, a full-search is applied
only to codewords belonging to that cluster. In this

research, the centroids {gl,gz,/\ 8y ;54 of codeword

clusters in the first stage are designed with a modified
LBG algorithrn.

Suppose that N codewords, {c,} with dimension & ,
are already generated by the LBG algorithm. Then, the
regions, VI which are optimal partitions of the input

training data around cach codeword are also known.
For the first stage of the MSFS, the codewords are
partitioned into N /2 clusters. The centroids of
codeword clusters are generated as follows.

—468 —

® Sclect N/2 initial centeroid, {g,} .

® Cluster the codewords {c,} around each

centeroid g, using an Fuclidean distance

measure.

® Compute the new centeroid, g, of each
cluster with the original training data
belonging to all the V) regions of the
codewords in the current codeword cluster.

® Repeat steps 2 and 3 until the changes in the

centeroids of the codeword clusters are
relatively small.,

Note that step 3 is different from the usual LBG
algorithm. The modified LBG algorithm that has
codewords {c,} as its training data uses the same

nearest condition as the traditional VQ, but in
computing the centeroids it uses the original data in the

V, regions instead of codewords. These centeroids

need an additional N/2 memory locations to be
stored.

B. Fast Codeword Search

Using an example, the details in the MSFS algorithm
are illustrated in this section. First, zero mean and unit
variance random Gaussian data are generated as
training data in a VQ design. The codebook in the VQ
is designed with the general LBG algorithm, and the

centeroids of the codeword clusters are designed with
the above modified LBG algorithm.

Figure 1. The V, regions and the boundaries of

codeword clusters (100 Gaussian data -- », 16
codewords -- x, 4 codeword clusters -- O)

Figure 1 shows 100 Gaussian data (marked as), 16
codewords (marked as x), the centeroids (marked as O)
of the codeword clusters, the border lines (thin solid

3
lines) of V, regions of the codewords, and the border
lines (dark solid lines) of the codeword clusters.

The problem that can be seen in Figure 1 is that the
border lines of the V, regions of the codewords are not
the same as those of the codeword clusters. The
disparity in border the lines causes some additional
searching distortion in VQ. This is solved by

identifying which K regions in a codeword cluster

boundary are subsets of a large data set, U, belonging

to the codeword cluster boundary or which ¥V, regions
are located across the boundaries of the codeword
cluster. All the codewords in these two groups of V/

regions are related to the current centroid, g,. After

this procedure, each centeroid g, of codeword cluster

contains the set of codeword index to be searched in the
second stage.

The summary of the MSFS algorithm is as follows:

* Search for the nearest centroid, g,,to an input, X;.

e Search for the nearest codeword, ¢, , in the

1 ?

codeword index set of the current, g, .

Note that each codeword index set of g, needs

additional memory locations, but only the codeword
indices must be stored. Table 1, as an example, shows
the number of codewords in each codeword cluster for
the data from Figure 1.

Table 1. The number of codewords in each codeword
cluster(16 codewords)

Code No. of No. of V. Total no. of
word subsets ' codewords
cluster V across per cluster
: border

no.

1 4 1 5

2 5 0 5

3 1 2 3

4 4 1 5

Table 1 shows that, in a codebook of 16 codewords,
when using the MSFS algorithm, a maximum of 9
distortion measure computations are needed in the
codeword search algorithm, of which four are necessary
in the first stage and a maximum five are required in the
second stage. Note that the full search needs 16
distortion measure computations. In a small size
codebook such as that shown in Table 1, the reduction

—469 -

of computations is not very great, but the advantage in
large size codebook will be substantial.

In Table 2, the larger codebook of size 256 is
investigated with vectors of dimensions 2 and 5. The
MSFS algorithm here is applied to 16 codeword
clusters. In the case of vectors of dimension 2, a the
maximum of 45 distortion measure computations are
required, in which 16 computations are necessary in the
first stage and the maximum 29 computations are
required in the second stage.

Table 2. The number of codewords in each codeword
cluster(256 codewords)

Codeword Total no. Total no,

cluster of codewords of codewords

no- (dim=2) (dim=5)
1 21 23
2 25 28
3 20 34
4 29 35
5 21 30
6 17 34
7 25 31
8 26 33
8 20 33
10 23 34
11 20 37
12 21 35
13 23 34
14 19 41
15 20 30
16 22 33

In the full search method, 256 computations are
required. In the case of vectors of dimension 5, the
MSFS algorithm needs a maximum of 57 distortion
measure computations in which the maximum 41
computations in the second stage are required in the
14" codeword cluster. Thus 18 percent of the full
search computational burden is necessary in the 2
dimension case when the MSFS algorithm is applied
and 22 percent of the full search is required for the 5
dimension 5. For both cases, an average of about 20
percent of the full search computational burden is
required. Note that, in this example, there is no

additional distortion introduced by the MSFS algorithm.

4
The MSFS requires 16 additional memory locations for
storing the centeroids of the codeword clusters and
about 2N memory locations for storing integer index
sets in each codeword cluster. Also note that by
combining the MSFS algorithm with other fast
codeword search algorithms (discussed in Section 2) at
cach stage of the MSFS, additional complexity
reduction is possible.

1V. SUMMARY

The multi-stage fast search algorithm for VQs was
designed and tested with Gaussian training data. The
centroids of codeword clusters in the first stage of the
MSFS were designed with the modified LBG algorithm.
In the codebook of size 256, the complexity with the
MBSFS of only two stages is reduced to 20 percentage of
the full search complexity without introducing any
additional distortion. Since this is very significant in
real applications, the VQ method with the MSFS can be
expected to give improved performance for many
applications.

V. REFERENCES

[1] A. Gersho, and R.M. Gray, Vector quantization
and data compression, Kluwer, Massachusetts,
1992.

[2] C.D. Bei, and R M. Gray, “An improvement of the
minimum distortion encoding algorithm for vector
quantization,” IEEE Trans. on Comm., vol. 33, no.
10, pp. 1132-1133, 1985.

[3] J. Ngwa-Ndifor, and T. Ellis, “Predictive partial
search algorithm for vector quantization,” IEE
Electronic Letters, vol. 27, pp.1722-1723, 1991.

[4] SH. Huang, and S.H. Chen, “Fast encoding
algorithm for VQ-based image coding,” IEE,
Eletronic Letters, vol. 26, pp. 1618-1619, 1990.

[5] G. Poggi, “Fast algorithm for full-search VQ
encoding,” JEE Electronic Letters, vol. 13, pp.
1141-1142, 1991.

[6] C.Q. Chen, S. H. Koh, and 1.Y. Soon, “Fast
codebook search algorithm for unconstrained
vector quantization,” IEE Proc.-Vis. Image Signal
Process, vol. 145, no. 2, pp. 97-102, 1998,

- 470~

