퍼지시스템에 대한 관측가능성

Continuously initial observability for the fuzzy system

강점란¹, 권영철², 박종서³ 부산시 사하구 하단동 동아대학교 수학과^{1, 2}, 경남 진주시 신안동 진주교육대학교 수학교육학과³ Jum-Ran Kang¹, Young-Chel Kwun², Jong-S대 Park³, Dept. of Mathematics, Dong-a University, Pusan 604-714, Korea^{1, 2}, yckwun@daunet.donga.ac.kr,

Dept. of Mathematics Education, Chinju National University of Education, Chinju, parkjs@cue.ac.kr.

ABSTRACT

This paper is concerned with fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in E_N . We study continuously initial observability for the following fuzzy system:

$$\begin{cases} \dot{x}(t) = a(t)x(t) + f(t, x(t)), \\ x(0) = x_0, \quad y(t) = {}_{\alpha} \Pi(x(t)), \end{cases}$$

where $a: [0, T] \to E_N$ is fuzzy coefficient, initial value $x_0 \in E_N$ and nonlinear funtion $f: [0, T] \times E_N \to E_N$ satisfies a Lipschitz condition. Given fuzzy mapping $\Pi: C([0, T]: E_N) \to Y$ and Y is an another E_N .

I. 서론

Many authors have studied several concepts of fuzzy systems. Kloeden ([4]) investigated the fuzzy dynamic system and Kaleva ([3]) discussed the Cauchy problem for the fuzzy differential equations. Seikkala ([7]) proved the existence and uniqueness of fuzzy solution for the following equation:

$$\begin{cases} \dot{x}(t) = f(t, x(t)), \\ x(0) = x_0, \end{cases}$$

where f is a continuous mapping from $R^+ \times R$ into R and x_0 is a fuzzy number. Observability of linear and nonlinear systems represented by ordinary differential equations has been extensively studied ([1]). In particular Quinn and Carmichael ([9])

studied the continuously initial observability problems using fixed point methods, degress theory and pseudo-inverses. But the case of general fuzzy system has not been treated yet. The purpose of this note is to investigate the continuously initial observability of the fuzzy system in E_N space by utilizing the method of ([8]).

Let E_N be the set of all upper semicontinuous convex normal fuzzy numbers with bounded lpha-level intervals.

II. 본론

Continuously initial observability

We consider the continuously initial observable problem for the following nonlinear fuzzy system:

(F.N.S.)
$$\begin{cases} \dot{x}(t) = a(t)x(t) + f(t,x(t)), \\ x(0) = x_0, \\ y(t) = {}_{a}\Pi(x(t)), \end{cases}$$

where $a:[0,T] \rightarrow E_N$ is fuzzy coefficient, initial value $x_0 \in E_N$ and the nonlinear funtion $f:[0,T] \times E_N \rightarrow E_N$ satisfies the Lipschitz condition.

Let $\Pi: C([0,T]:E_N) \rightarrow Y$ be a given fuzzy mapping where Y is in E_N . The (F.N.S.) is related to the following fuzzy integral system: (F.I.S.)

$$\begin{cases} x(t) = S(t)x_0 + \int_0^t S(t-s)f(s, x(s))ds, \\ x(0) = x_0 \in E_N, \\ y(t) = \pi H(x(t)) \end{cases}$$

where S(t) is a fuzzy number,

$$[S(t)]^{\alpha} = [S_{l}^{\alpha}(t), S_{r}^{\alpha}(t)]$$

= $[\exp\{\int_{0}^{t} a_{l}^{\alpha}(s)ds\}, \exp\{\int_{0}^{t} a_{r}^{\alpha}(s)ds\}]$

and $S_i^a(t)$ (i=l,r) is continuous, that is, there exists a constant c > 0 such that $|S_i^a(t)| \le c$ for all $t \in [0,T]$. Now we give definitions relevant to the linear fuzzy system:

$$(\text{F.L.s.}) \begin{cases} \dot{x}(t) = a(t)x(t), \\ x(0) = x_0, \\ y(t) = a \quad H(x(t)), \end{cases}$$

We define the fuzzy mapping \widehat{H} from $\widehat{P}(R)$ to E_N by

$$[\widehat{H}(v(t))]^{\alpha} = \begin{cases} [\Pi(S(t)v(t))]^{\alpha}, & v(t) \subset \overline{\Gamma_{x_0}}, \\ 0, & \text{otherwise.} \end{cases}$$

where $\widehat{P(R)}$ is set of subsets in R and Γ_{x_0} is support of fuzzy initial value x_0 . Then there exist \widetilde{H}_i^a (i=l,r) such that

$$\begin{split} \widehat{H}_{l}^{\alpha}(v_{l}(t)) &= \Pi_{l}^{\alpha}(S_{l}^{\alpha}(t)v_{l}(t)), \, v_{l}(t) \in [x_{0l}^{\alpha}, x_{0}^{1}], \\ \widehat{H}_{r}^{\alpha}(v_{r}(t)) &= \Pi_{r}^{\alpha}(S_{r}^{\alpha}(t)v_{r}(t)), \, v_{r}(t) \in [x_{0}^{1}, x_{0r}^{\alpha}]. \end{split}$$

Definition 1.1.

The (F.L.S.) is continuously initial observable if, for any initial state x_0 there exists a fuzzy mapping \widehat{H} such that the fuzzy out put y(t) satisfies $\widehat{H}(x_0) = {}_a y(t)$. Since (F.L.S.) is continuously initially observable, \widehat{H}_l^{α} , \widehat{H}_r^{α} are bijective mappings. $x_{0l}^{\alpha} = (\widehat{H}_l^{\alpha})^{-1}(y_l(t)), \quad x_{0r}^{\alpha} = (\widehat{H}_r^{\alpha})^{-1}(y_r(t)).$ Let $x_0 = {}_a \widehat{H}^{-1}(y(t) - \Pi(\int_0^t S(t-s)f(s,x(s))ds))$

then substituting this expression

into the (F.I.S.1) yields α -level of x(t) as

$$[x(t)]^a = [S(t) \hat{H}^{-1}(y(t) -$$

$$\prod \left(\int_0^t S(t-s)f(s,x(s))ds \right) + \int_0^t S(t-s)f(s,x(s))ds \right]^{\sigma}.$$

Thus

$$[\Pi(x(t))]^{\alpha} = [\Pi_{l}^{\alpha}(x_{l}^{\alpha}(t)), \Pi_{r}^{\alpha}(x_{r}^{\alpha}(t))]$$

=
$$[\Pi_l^{\alpha}(S_l^{\alpha}(t)(\widehat{H}_l^{\alpha})^{-1}(y_l^{\alpha}(t) -$$

$$\prod_{l}^{\alpha} \left(\int_{0}^{t} S_{l}^{\alpha}(t-s) f_{l}^{\alpha}(s, x(s)) ds \right) \right)$$

+
$$\Pi_l^{\alpha}$$
 ($\int_0^t S_l^{\alpha}(t-s) f_l^{\alpha}(s,x(s)) ds$),

$$\Pi_r^{\alpha}(S_r^{\alpha}(t)(\widehat{H}_r^{\alpha})^{-1}(y_r^{\alpha}(t) -$$

$$\Pi_r^{\alpha}\left(\int_0^t S_r^{\alpha}(t-s)f_r^{\alpha}(s,x(s))ds\right)\right)$$

+
$$\Pi_r^a (\int_0^t S_r^a(t-s) f_r^a(s, x(s)) ds)$$
]

$$= [\widehat{H}_l^{\alpha}((\widehat{H}_l^{\alpha})^{-1}(y_l^{\alpha}(t) -$$

$$\prod_{l}^{\alpha} \left(\int_{0}^{t} S_{l}^{\alpha}(t-s) f_{l}^{\alpha}(s,x(s)) ds \right) \right)$$

+
$$\prod_{l}^{\alpha} \left(\int_{0}^{t} S_{l}^{\alpha}(t-s) f_{l}^{\alpha}(s,x(s)) ds \right),$$

$$\widehat{H}_r^{\alpha}((\widehat{H}_r^{\alpha})^{-1}(y_r^{\alpha}(t) -$$

$$\prod_r^{\alpha} \left(\int_0^t S_r^{\alpha}(t-s) f_r^{\alpha}(s,x(s)) ds \right) \right)$$

+
$$\Pi_r^{a} (\int_0^t S_r^{a}(t-s) f_r^{a}(s,x(s)) ds)]$$

$$= [y_1^{\alpha}(t), y_r^{\alpha}(t)] = [y(t)]^{\alpha}.$$

Define

$$\Phi x(t) = {}_{a}S(t) \hat{H}^{-1}(y(t) -$$

$$\Pi(\int_0^t S(t-s)f(s,x(s))ds))$$

+
$$\int_0^t S(t-s)f(s,x(s))ds$$

where the fuzzy mapping \widehat{H}^{-1} satisfies the above conditions.

The supremum metric d_{∞} on E^n is defined by

$$d_{\infty}(u, v) = \sup \{d_{H}([u]^{\alpha}, [v]^{\alpha}) : \alpha \in (0, 1]\}$$

for all $u, v \in E^n$ and d_H is the Hausdorff distance.

We assume the following hypotheses:

(H1) The linear equation (F.L.S.) is continuously initial observable.

(H2) There exists a positive constant

l > 0 such that $d_H([f(s, \xi_1(s))]^a, [f(s, \xi_2(s))]^a)$

 $\leq ld_H([\xi_1(s)]^\alpha, [\xi_2(s)]^\alpha)$ for all $\xi_1(s), \xi_2(s) \in E_N$

(H3) There exists a positive constant

k > 0 such that

$$d_H([\widehat{H}^{-1}(\Pi(\int_0^{\cdot} S(\cdot - s)f(s, \xi_1(s))ds))]^{\alpha},$$

$$[\hat{H}^{-1}(\Pi(\int_{0}^{\cdot} S(\cdot - s)f(s, \xi_{2}(s))ds))]^{\alpha})$$

$$\leq k \int_0^{\cdot} d_H([f(s,\xi_1(s))]^{\alpha},[f(s,\xi_2(s))]^{\alpha}).$$

Theorem 1.1.

Suppose that hypotheses are hold. Then the state of the (F.I.S.) is continuously initial observabe. Proof. Omitted.

2. Examples

Example 2.1.

Consider the following fuzzy differential equation:

$$\begin{cases} \dot{x}(t) = 2x(t) \\ x(0) = x_0, \\ y(t) = 3. \end{cases}$$

The α -level sets of fuzzy numbers 2and 3 are

$$[2]^{\alpha} = [\alpha + 1, 3 - \alpha], [3]^{\alpha} = [\alpha + 2, 4 - \alpha]$$

for all $\alpha \in [0,1]$.

From the definition of fuzzy solution,

$$[x(t)]^{\alpha} = [e^{(\alpha+1)t}x_{0t}^{\alpha}, e^{(3-\alpha)t}x_{0t}^{\alpha}]$$

for all $\alpha \in [0,1]$.

Since $y(t) = {}_{\alpha} \Pi(x(t))$,

$$[\alpha+2,4-\alpha]=[\Pi_{t}^{\alpha}(e^{(\alpha+1)t}x_{0t}^{\alpha}),\Pi_{r}^{\alpha}(e^{(3-\alpha)t}x_{0r}^{\alpha})].$$

Hence

$$\widehat{H}_{l}^{\alpha}(x_{0l}^{\alpha}) = \Pi_{l}^{\alpha}(e^{(\alpha+1)t}x_{0l}^{\alpha}) = \alpha+2,$$

$$\widehat{H}_r^{\alpha}(x_{0r}^{\alpha}) = \Pi_r^{\alpha}(e^{(3-\alpha)t}x_{0r}^{\alpha}) = 4-\alpha.$$

Hence

$$x_{0l}^{\alpha} = (\widehat{H}_{l}^{\alpha})^{-1}(\alpha+2), \quad x_{0r}^{\alpha} = (\widehat{H}_{r}^{\alpha})^{-1}(4-\alpha).$$

Example 2.2.

Consider the following fuzzy differential equation:

$$\begin{cases} \dot{x}(t) = 2x(t) + 2tx(t)^2, \\ x(0) = x_0, \\ y(t) = 3. \end{cases}$$

Let $f(t, x(t)) = 2 tx(t)^2$.

Then α -level set of f(t,x(t)) is $[f(t,x(t))]^{\alpha} = [2tx(t)^{2}]^{\alpha} = t[2]^{\alpha} \cdot [x(t)^{2}]^{\alpha}$ $= t[\alpha+1,3-\alpha] \cdot [(x_{l}^{\alpha}(t))^{2},(x_{r}^{\alpha}(t))^{2}]$ $= t[(\alpha+1)(x_{l}^{\alpha}(t))^{2},(3-\alpha)(x_{r}^{\alpha}(t))^{2}]$ where $[x(t)]^{\alpha} = [x_{l}^{\alpha}(t),x_{r}^{\alpha}(t)]$ and $[2]^{\alpha} = [\alpha+1,3-\alpha] \quad \text{for all} \quad \alpha \in [0,1] .$

$$\begin{split} x_{0l}^{\alpha} &= (\widehat{H}_{l}^{\alpha})^{-1}((\alpha + 2) \\ &- \Pi_{l}^{\alpha} (\int_{0}^{t} te^{(\alpha + 1)t}(\alpha + 1)(x_{l}^{\alpha}(t))^{2} ds)), \\ x_{0r}^{\alpha} &= (\widehat{H}_{r}^{\alpha})^{-1}((4 - \alpha) \\ &- \Pi_{r}^{\alpha} (\int_{0}^{t} te^{(3 - \alpha)t}(3 - \alpha)(x_{r}^{\alpha}(t))^{2} ds)). \end{split}$$

III. 참고문헌

- [1] S. Barnett and R.G.Cameron, Introduction to mathematical control theory, Clarendon Press, Oxford, (1988).
- [2] P. Diamand and P. E. Kloeden, Metric space of Fuzzy sets, World scientific., (1994).
- [3] O. Kaleva, Fuzzy differential equations, Fuzzy set and System. 24,

- 301-317, (1987).
- [4] P. E. Kloeden, Fuzzy dynamical systems, Fuzzy Sets and Systems. 7, 275-296, (1982).
- [5] Y. C. Kwun and D. G. Park, Optimal control problem for fuzzy differential equations, Proceedings of the Korea-Vietnam Joint Seminar, 103-114, (1998).
- [6] M. Mizumoto and K. Tanaka, Some properties of fuzzy numbers, North-Holland Publishing Company, (1979).
- [7] S. Seikkala, On The Fuzzy Initial Value problem, Fuzzy Sets and Systems. 24, 319-330, (1987).
- [8] P. V. Subrahmanyam, S.K.Sudarsa nam, A note fuzzy Volterra integral equations, Fuzzy Sets and Systems. 81, 237-240, (1996).
- [9] M. D. Quinn and N. Carmichael, An approach to nonlinear control problems using fixed point methods, degree theory and pseudo inverses, Numer. Funct. Anal. and Optimiz. 7, 197-219, (1984-85).