A note on fuzzy Fell topology

K.Hur*, J.H.Ryou* and B.S. Baik**

1. preliminaries

For a set X, I^X denote set of all fuzzy sets, where I = [0,1] and if $A \in I^X$, then $A: X \to I(\text{See } [9])$. A fuzzy set A in X is called a *fuzzy point* in X with spport x and value $\lambda \in (0,1]$, denoted by x_λ , if for each $y \in X$

$$A(y_{\lambda}) = \begin{cases} \lambda & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

The set of all fuzzy points in X will be denoted by $F_p(X)$ (See[7]).

The concepts of fuzzy continuity, F-open(resp. F-closed)mapping and fuzzy product space refers to [2], [1] and [8] respectively. Futhermore, the concepts of quasi-coincident and separation axioms refers to [7] and [3] respectively.

Definition 1.1[7]. Let $A, B \in I^X$ and $x_{\lambda} \in F_p(X)$, where $F_p(X)$ denotes the set of all fuzzy points in X. Then:

(1) A is said to be *quasi-coincident with* B, denoted by AqB, if there exists an $x \in X$ such that $A(x) > B^c(x)$ or A(x) + B(x) > 1.

Also, we say that A and B are quasi-coincident(with each other) at x.

(2) x_{λ} is said to be quasi-coincident with A, denoted by $x_{\lambda}qA$, if $\lambda > A^{c}(x)$ or $\lambda + A(x) > 1$.

Definition 1.2[3]. A fts X is said To be:

(1) T_1 , if for any pair of distinct points x_{λ} and y_{μ} ,

(case1). When $x \neq y$, x_{λ} has an open neighborhood which is not q-coincident with y_{μ} and y_{μ} has an open neighborhood which is not q-coincident with x_{λ} .

(case2). When x=y, and $\lambda \langle \mu(\text{say}) \rangle$, then there exists a q-neighborhood V of y_{μ} such that $x_{\lambda} - V$.

(2) T_2 or Hausdorff, if for any two distinct points x_λ and y_μ ,

(casel). When $x \neq y$, x_{λ} have open neighborhoods which are not q-coincident.

(case2). When x=y, and $\lambda < \mu(\text{say})$, then y_{μ} has an open q-neighborhood V and x_{λ} has open neighborhood U such that $V_{\overline{q}}U$.

Result 1.A[3]. A fts X is T_1 if and only if every singleton set is closed in X.

Definition 1.3[4]. A collection of fuzzy sets \mathcal{F} of a set X is said to form a *filter base*, if for any finite collection $\{U_i\colon i=1,\cdots,n\}$ form \mathcal{F} , $\bigcap_{i=1}^n U_i\neq\emptyset$.

Definition 1.4[4]. A fuzzy set A in a fts X is said to be compact if for each filter base \mathcal{F} such that every finite intersection of members of \mathcal{F} is q-coincident with A, $\left(\bigcap_{B\in\mathcal{F}}\overline{B}\right)\cap A\neq\emptyset$.

Result 1.B[4]. Every fuzzy closed set of a compact fts is compact.

Result 1.C[4]. A compact subset of a T_2 -fts is closed.

Notation 1.5[5]. Let X be a fts and let $A \in I^X$. Then:

- (1) $I_0^X = \{ E : E \text{ is a nonempty fuzzy closed set in } X \}$.
- (2) $I_0^A = \{ E \in I_0^X : E \subset A \}$.

Definition 1.6[5]. Let (X, \mathcal{I}) be a fts. Then the fuzzy Vietories topology \mathcal{I}_v on I_0^X is generated by the collection of the forms $\langle U_1, \cdots, U_n \rangle_v$ with U_1, \cdots, U_n fuzzy open sets in X, where $\langle U_1, \cdots, U_n \rangle_v = \{ E \in I_0^X : E \subset \bigcup_{i=1}^n U_i \text{ and } E \neq U_i \text{ for each } i = 1, \cdots n \}$.

The pair (I_0^X, \Im_v) is called a fuzzy hyperspace with fuzzy Vietories topology(fuzzy hyperspace, in short).

Definition 1.7[6]. A mapping is said to be *fuzzy set-valued* if its values are fuzzy sets in a given set.

Result 1.D[6]. Let Y be a fts, I_0^X a fuzzy hyperspace and $F: Y \rightarrow I_0^X$ a fuzzy set-valued mapping. Then the following are equivalent:

- (1) F is F-continuous
- (2) For each fuzzy open(resp. closed) set $\,A\,$ in $\,X\,$,

$$F^{-1}(I_0^A) = \{ y \in Y : F(y) \in I_0^A \} = \{ y \in Y : F(y) \subset A \}$$

is open(resp. closed) in Y.

(3) For each fuzzy closed (resp. open) set A in X,

$$Y - F^{-1}(I_0^{A^c}) = \{ y \in Y : F(y) \notin I_0^{A^c} \} = \{ y \in Y : F(y) \ qA \},$$

is closed(resp. open) in Y.

2. Definition and foundamental properties.

Notation. Let X be a fts and $E \in I^X$. Then:

- (1) $[I_0^X] = \{ E \in I^X : E \text{ is closed in } X \}.$ (2) $E^- = \{ A \in [I_0^X] : AqE \}.$
- (3) $E^+ = \{ A \in [I_0^X] : A \subset E \}$.
- (4) $\mathcal{F}_n = \{ E \in I_0^X : E \text{ has at most } n \text{ elements } \}.$

Definition 2.1. Let X be a fts and let

 $\mathbf{g} = \{ V : V \text{ is open in } X \} \bigcup \{ (K^c)^+ : K \text{ is compact in } X \}$

Then the fuzzy Fell topology T_f on $[I_0^X]$ has a subbase \mathfrak{Z} .

Theorem 2.2. The basic elements of T_f are three kinds of the forms:

Type 1. $\int_{-1}^{n} V_i^-$, where each V_i is open in X.

Type 2. $(K^c)^+$, where K is compact in X.

Type 3. $\left(\bigcap_{i=1}^{n} V_i^{-}\right) \cap (K^c)^+$.

Theorem 2.3. Let X be a Hausdorff fts. Then the fuzzy Vietories topology T_v on I_0^X is finer than the fuzzy Fell topology T_f on I_0^X .

Furthermore, if we replace fuzzy compact sets in the definition of the subbase for T_f by fuzzy closed sets, then T_f and T_v are equivalent. Hence if X is fuzzy compact Hausdorff, then $T_f = T_v$.

Theorem 2.4. Let X be a Hausdorff fts. Then:

- (1) If $f: Z \to (I_0^X, T_v)$ is a F-continuous, fuzzy set-valued mapping, then $f: Z \to (I_0^X, T_f)$ is F-continuous.
- (2) Let $f: (I_0^X, T_f)^n \to (I_0^X, T_f)$ be defined by $f(A_1, \dots, A_n) = \bigcup_{i=1}^n A_i$. Then f is F-continuous.

Theorem 2.5. Let X be a fuzzy Hausdorff space. If 0 is open in (I_0^X, T_f) , then $\bigcup 0 = \bigcup \{ E : E \in 0 \}$ is open in X.

3 Further properties

Theorem 3.1. Let X be a fuzzy Hausdorff space. Then :

- (1) If $\mathcal B$ is a compact subset of $(I_0^X$, T_v), then it is a compact subset of $(I_0^X$, T_f).
- (2) If $\mathcal D$ is dense in $(I_0^X\,,\,T_v)$, then it is also dense in $(I_0^X\,,\,T_f)$.

Theorem 3.2. Let X be a fts. Then:

- (1) { $E \in I_0^X : E \subset A$ } is closed in (I_0^X, T_f) if A is closed in X.
- (2) { $E \in I_0^X : EqA$ } is closed in (I_0^X, T_f) if A is compact in X and X is Hausdorff.

Let $\mathcal{F}_n(X) = \{E \in I_0^X : X \text{ has at most } n \text{ elements with distinct support } \}$. Then we have the following result :

Theorem 3.3. Let X be a fuzzy Hausdorff space. If 0 is open in $(\mathcal{F}_n(X), T_f)$. Then $\bigcup 0$ is open in X.

References

- [1] K.K.Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weekly continuity, J.Math. Anal. Appl. 82(1981) 14-32.
- [2] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968) 182-190.
- [3] S.Ganguly and S.Saha, On separation axioms and T_i -fuzzy continuity, Fuzzy Sets and Systems 16(1985) 265-275.
- [4] ______, A note on compactness in a fuzzy setting, Fuzzy Sets and Systems 34(1990) 117-124.
- [5] K.Hur, J.R.Moon and J.H.Ryou, A note on fuzzy Vietories topology, Journal of Fuzzy Logic and Intelligent Systems, Vol. 10 No.2(2000) 129-132.
- [6] K.Hur, J.H.Ryou and Y.S.Ahn, A note on fuzzy continuous set-valued mappings, To appear.
- [7] Pu pao-Ming and Liu Ying-Ming, Fuzzy topology I, J.Math.Anal.Appl. 76(1980) 571-599.
- [8] _______ , Fuzzy topology II, J.Math.Anal.Appl. 77(1980) 20-37.
- [9] L.A.Zadeh, Fuzzy sets, Inform and Control 8(1965)338-353.