Fuzzy (r, s)-interiors and fuzzy (r, s)-closures

Eun Pyo Lee and Young-Bin Im Department of Mathematics, Seonam University, Namwon 590-711, Korea

Abstract

We introduce the concept of double fuzzy topological spaces as a generalization of intuitionistic fuzzy topological spaces and smooth topological spaces and then investigate some of their properties. Also we introduce the notions of fuzzy (r, s)-interiors and fuzzy (r, s)-closures in double fuzzy topological spaces.

1. Introduction

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Çoker and his colleagues [5, 6, 7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets.

In this paper, we introduce the concept of double fuzzy topological spaces as a generalization of intuitionistic fuzzy topological spaces and smooth topological spaces and then investigate some of their properties. Also we introduce the notions of fuzzy (r, s)-interiors and fuzzy (r, s)-closures in double fuzzy topological spaces.

2. Preliminaries

Let X be a nonempty set. An intuitionistic fuzzy set A is an ordered pair

$$A = (\mu_A, \gamma_A)$$

where the functions $\mu_A: X \to I$ and $\gamma_A: X \to I$ denote the degree of membership and the degree of nonmembership respectively, and $\mu_A + \gamma_A \leq \tilde{1}$.

Obviously every fuzzy set μ of X is an intuitionistic fuzzy set of the form $(\mu, \tilde{1} - \mu)$.

Definition 2.1. [1] Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be intuitionistic fuzzy sets on X. Then

- (1) $A \subseteq B$ iff $\mu_A \le \mu_B$ and $\gamma_A \ge \gamma_B$.
- (2) A = B iff $A \subseteq B$ and $A \supseteq B$.
- (3) $A^c = (\gamma_A, \mu_A)$.
- (4) $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B)$.
- (5) $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B).$
- (6) $0_{\sim} = (\hat{0}, \hat{1})$ and $1_{\sim} = (\hat{1}, \hat{0})$.

Definition 2.2. [6] An intuitionistic fuzzy

topology on X is a family \Im of intuitionistic fuzzy sets in X which satisfies the following properties:

- (1) $0_{\sim}, 1_{\sim} \in \Im$.
- (2) If $A_1, A_2 \in \mathcal{I}$ then $A_1 \cap A_2 \in \mathcal{I}$.
- (3) If $A_i \in \Im$ for all i, then $\bigcup A_i \in \Im$.

The pair (X, \mathcal{I}) is called an *intuitionistic* fuzzy topological space.

Let (X, \mathcal{I}) be an intuitionistic fuzzy topological space. Then members of \mathcal{I} are called *intuitionistic fuzzy open sets* of X and their complements *intuitionistic fuzzy closed sets*.

3. Double fuzzy topological spaces

Let I(X) be a family of all intuitionistic fuzzy sets of X.

Definition 3.1. Let X be a nonempty set. A double fuzzy topology $\mathfrak{I} = (\tau, \tau_c)$ on X is two maps $\tau: I(X) \to I$ and $\tau_c: I(X) \to I$ which satisfy the following properties:

- (1) $\tau(A) + \tau_c(A) \le 1$ for any $A \in I(X)$.
- (2) $\tau(0_{\sim}) = \tau(1_{\sim}) = 1$ and $\tau_c(0_{\sim}) = \tau_c(1_{\sim}) = 0$.
- (3) $\tau(A \cap B) \ge \tau(A) \land \tau(B)$ and $\tau_c(A \cap B) \le \tau_c(A) \lor \tau_c(B)$.
- (4) $\tau(\bigcup A_i) \ge \bigwedge \tau(A_i)$ and $\tau_c(\bigcup A_i) \le \bigvee \tau_c(A_i)$.

The $(X, \mathcal{I}) = (X, \tau, \tau_c)$ is called a *double* fuzzy topological space. And, we call τ a

gradation of openness and τ_c a gradation of nonopenness.

Definition 3.2. Let X be a nonempty set. A double fuzzy family closedsets $\Omega = (\omega, \omega_c)$ Xtwo on is maps $\omega: I(X) \to I$ and $\omega_c: I(X) \to I$ which satisfy the following properties:

- (1) $\omega(A) + \omega_c(A) \le 1$ for any $A \in I(X)$.
- (2) $\omega(0_{\sim}) = \omega(1_{\sim}) = 1$ and $\omega_{c}(0_{\sim}) = \omega_{c}(1_{\sim}) = 0$.
- (3) $\omega(A \cup B) \ge \omega(A) \land \omega(B)$ and $\omega_c(A \cup B) \le \omega_c(A) \lor \omega_c(B)$.
- (4) $\omega(\bigcap A_i) \ge \bigwedge \omega(A_i)$ and $\omega_c(\bigcap A_i) \le \bigvee \omega_c(A_i)$.

In this case, we call ω a gradation of closedness and ω_c a gradation of nonclosedness.

Proposition 3.3. Let $\Im = (\tau, \tau_c)$ be a double fuzzy topology on X and $\varOmega_{\Im} = (\omega_{\tau}, \omega_{\tau_c})$ defined by

$$\omega_{\tau}(A) = \tau(A^c)$$
 and $\omega_{\tau_c}(A) = \tau_c(A^c)$.

Then Ω_{\Im} is a double fuzzy family of closed sets on X.

Proposition 3.4. Let $\Omega = (\omega, \omega_c)$ be a double fuzzy family of closed sets on X and $\Im_{\Omega} = (\tau_{\omega}, \tau_{\omega_c})$ defined by

$$\tau_{\omega}(A) = \omega(A^c)$$
 and $\tau_{\omega_c}(A) = \omega_c(A^c)$.

Then $\Im_{\mathcal{Q}}$ is a double fuzzy topology on X.

Corollary 3.5. Let $\Im = (\tau, \tau_c)$ be a double

fuzzy topology and $\mathcal{Q}=(\omega,\omega_c)$ a double fuzzy family of closed sets. Then

$$\Im_{\Omega_{7}} = \Im$$
 and $\Omega_{\Im_{9}} = \Omega$.

Proposition 3.6. Let (X, τ, τ_c) be a double fuzzy topological space. Then for each $r \in I$, $\tau_r = \{A \in I(X) \mid \tau(A) \ge r\}$

is an intuitionistic fuzzy topology on X. Moreover $\tau_{r_1} \supseteq \tau_{r_2}$ if $r_1 \le r_2$.

Proposition 3.7. Let (X, τ, τ_c) be a double fuzzy topological space. Then for each $s \in I$,

$$\tau_c^s = \{ A \in I(X) \mid \tau_c(A) \le s \}$$

is an intuitionistic fuzzy topology on X. Moreover $\tau_c^{s_1} \subseteq \tau_c^{s_2}$ if $s_1 \le s_2$.

Corollary 3.8. Let $\Im = (\tau, \tau_c)$ be a double fuzzy topology on X. Then for each $r, s \in I$, $\Im_r^s = \{A \in I(X) \mid \tau(A) \geq r \text{ and } \tau_c(A) \leq s\}$ is an intuitionistic fuzzy topology on X and $\Im_r^s = \tau_r \cap \tau_c^s$. Moreover $\Im_{r_c}^{s_1} \subseteq \Im_{r_1}^{s_2}$ if $r_1 \leq r_2$ and $s_1 \leq s_2$.

4. Fuzzy (r, s)-interiors and fuzzy (r, s)-closures

Let $I \oplus I = \{(r, s) \mid r, s \in I \text{ and } r+s \leq 1\}.$

Definition 4.1. Let A be an intuitionistic fuzzy set of a double fuzzy topological space (X, τ, τ_c) and $(r, s) \in I \oplus I$. Then A is called;

- (1) a fuzzy (r, s)-open set if $\tau(A) \ge r$ and $\tau_c(A) \le s$,
- (2) a fuzzy (r, s)-closed set if $\tau(A^c) \ge r$ and $\tau_c(A^c) \le s$.

Definition 4.2. Let (X, τ, τ_c) be a double fuzzy topological space. For each $(r,s) \in I \oplus I$ and for each $A \in I(X)$, the fuzzy (r,s)-interior is defined by

Int $(A, r, s) = \bigcup \{B \in I(X) \mid A \supseteq B \text{ and } B \text{ is a fuzzy } (r, s) \text{-open set } \}$

and the fuzzy (r,s)-closure is defined by

$$Cl(A, r, s) = \bigcap \{B \in I(X) \mid A \subseteq B \text{ and } \}$$

B is a fuzzy (r, s)-closed set $\}$.

The operators Int: $I(X) \times I \oplus I \to I(X)$ and C1: $I(X) \times I \oplus I \to I(X)$ are called the *fuzzy* interior operator and the *fuzzy* closure operator in (X, τ, τ_c) , respectively.

Obviously, $\operatorname{Int}(A, r, s)$ is the greatest fuzzy (r, s)-open set which is contained in A and $\operatorname{Cl}(A, r, s)$ is the smallest fuzzy (r, s)-closed set which contains A. Also, $\operatorname{Int}(A, r, s) = A$ for any fuzzy (r, s)-fuzzy open set A and $\operatorname{Cl}(A, r, s) = A$ for any fuzzy (r, s)-closed set A. Moreover, we have the following results.

Proposition 4.3. Let (X, τ, τ_c) be a double fuzzy topological space and let Int: $I(X) \times I \oplus I \to I(X)$ the fuzzy interior operator and $C1: I(X) \times I \oplus I \to I(X)$ the fuzzy closure operator in (X, τ, τ_c) . Then for

any $A, B \in I(X)$ and $(r, s) \in I \oplus I$,

- (1) $\operatorname{Int}(0_{\sim}, r, s) = 0_{\sim}, \operatorname{Int}(1_{\sim}, r, s) = 1_{\sim}.$
- (2) $\operatorname{Int}(A, r, s) \subseteq A$.
- (3) $\operatorname{Int}(A, r_1, s_1) \supseteq \operatorname{Int}(A, r_2, s_2)$ if $r_1 \le r_2$ and $s_1 \ge s_2$.
- (4) $\operatorname{Int}(A \cap B, r, s)$ = $\operatorname{Int}(A, r, s) \cap \operatorname{Int}(B, r, s)$.
- (5) Int(Int(A, r, s), r, s) = Int(A, r, s).
- (6) $Cl(0_{\sim}, r, s) = 0_{\sim}, Cl(1_{\sim}, r, s) = 1_{\sim}.$
- (7) $Cl(A, r, s) \supseteq A$.
- (8) $Cl(A, r_1, s_1) \subseteq Cl(A, r_2, s_2)$ if $r_1 \le r_2$ and $s_1 \ge s_2$.
- (9) $\operatorname{Cl}(A \cup B, r, s)$ = $\operatorname{Cl}(A, r, s) \cup \operatorname{Cl}(B, r, s)$.
- (10) Cl(Cl(A, r, s), r, s) = Cl(A, r, s).

Proposition 4.4. Let $\operatorname{Int}: I(X) \times I \oplus I \to I(X)$ be a map satisfying (1)-(5) of Theorem 4.3. Let $\tau: I(X) \to I$ and $\tau_c: I(X) \to I$ be maps defined by

$$\tau(A) = \bigvee \{ r \in I \mid \text{Int}(A, r, s) = A \}$$

and

$$\tau_c(A) = \bigwedge \{ s \in I \mid \operatorname{Int}(A, r, s) = A \}.$$

Then $\Im = (\tau, \tau_c)$ is a double fuzzy topology on X.

Proposition 4.5. Let $C1: I(X) \times I \oplus I \to I(X)$ be a map satisfying (6)-(10) of Theorem 4.3. Let $\omega: I(X) \to I$ and $\omega_c: I(X) \to I$ be maps defined by

$$\omega(A) = \bigvee \{ r \in I \mid \operatorname{Cl}(A, r, s) = A \}$$

and

$$\omega_c(A) = \bigwedge \{ s \in I \mid \operatorname{Cl}(A, r, s) = A \}.$$

Then $Q = (\omega, \omega_c)$ is a double fuzzy family of closed sets on X.

References

[1] K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems **20** (1986), 87-90.

[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.

[3] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, *Gradation of openness: fuzzy topology*, Fuzzy Sets and Systems **49** (1992), 237–242.

[4] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993),

[5] D. Çoker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4 (1996), 749–764.

[6] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.

[7] D. Çoker and A. Haydar Eş, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math 3 (1995), 899-909.

[8] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.