L-R 형 퍼지수의 집합-이론적 연산자들에 관한 연구

On the set-theoretic operations of L-R type fuzzy numbers

장 이 채

Lee-Chae Jang

Konkuk University, College of Natural Sciences, Division of Computer Sciences and Mathematics, #322 Danwoldong, Chungju, 380-701

E-mail: leechae.jang@kku.edu

(Abstract)

In this paper, we define a concept of some set-theoretical operations of L-R type fuzzy numbers and discuss some properties of these concepts. Using these results, we discuss a concept of cardinality of type-two fuzzy sets.

1. Introduction

Let $X=\{x_1, x_2, \cdots, x_n\}$ be a finite set. A fuzzy set M in X is defined by $M=\{(x, \mu_M(x)) \mid x \in X\}$

where $\mu_M: X \to [0,1]$ is the membership function of M. The complement \overline{M} of a fuzzy set M has the membership function $\mu_{\overline{M}} = 1 - \mu_M$. Zadeh[15, 16], A. Ralescu[9], D. Ralescu[10], Wygralak[12], Dubois and Prade[1,2,3], and Yager[14] investigated concepts of cardinality of a fuzzy set and obtained some properties of these concepts.

In this paper, we define the set-theoretic operations: \max , \min , and complement of L-R type fuzzy numbers on [0,1], and investigate some properties of these operations. Using these properties , we define a new concept of cardinality of type-two fuzzy sets. Furthermore, we obtain several properties results of this concept.

2. Preliminaries and definitions.

In this section, we introduce fuzzy numbers , L-R fuzzy numbers, and some operations of $L\!-\!R$ type fuzzy numbers.

Definition 2.1 [2] A fuzzy number is a fuzzy set M of the interval [0,1] if

- (1) M is normal, i.e. $\exists_1 x_0 \in [0,1]$ such that $\mu_M(x_0) = 1$;
- (2) M is convex, i.e. $\mu_M(\lambda x + (1-\lambda)y) \ge \min(\mu_M(x), \mu_M(y))$ for all $x, y, \lambda \in [0, 1]$:
- (3) μ_M is piecewise continuous.

Let L and R be strictly decreasing continuous functions from [0,1] to [0,1] such that L(0) = R(0) = 1 and L(1) = R(1) = 0. Then, L and R is called the left and the right shape function, respectively(see [7]).

Definition 2.2 [2,7] A fuzzy number M is said to be an L-R type fuzzy number it its membership function is defined by

$$\mu_{M}(x) = \begin{cases} L\left(\frac{m-x}{\alpha}\right) & \text{for } m-\alpha \leq x \leq m \leq 1, m \geq \alpha > 0 \\ R\left(\frac{x-m}{\beta}\right) & \text{for } m+\beta \geq x \geq m \geq 0, 1-m \geq \beta > 0 \\ 0 & \text{otherwise} \end{cases}$$

Symbolically, we write $M = (m, \alpha, \beta)_{LR}$ and denote that A_{LR} is the class of all such L - R type fuzzy numbers.

Definition 2.3 Let $M = (m, \alpha, \beta)_{LR}$ and $N = (n, \gamma, \delta)_{LR}$ belong to A_{LR} . Then $\max^*(M, N)$ and $\min^*(M, N)$ are defined by

$$\max^* \{M, N\} = (m \lor n, \alpha \land \beta, \beta \lor \delta)_{LR};$$

$$\min^* \{M, N\} = (m \land n, \alpha \lor \beta, \beta \land \delta)_{LR}.$$

Using the next proposition, we can discuss the order of L-R type fuzzy numbers.

Proposition 2.4 Let $M=(m,\alpha,\beta)_{LR}$ and $N=(n,\gamma,\delta)_{LR}$ be elements of A_{LR} . Then, we have

$$\max^*(M, N) = M$$
, $\min^*(M, N) = N$ if and only if $m \le n$, $\alpha \ge \gamma$, and $\beta \le \delta$

Using the definition([2,3]) of substraction $M \oplus N$ of fuzzy numbers M, N and the Eq.(4,2.1) of [3], we can obtain the following proposition.

Proposition 2.5 [3] (1) If $M = (m, \alpha, \beta)_{LR}$ and $N = (n, \gamma, \delta)_{RL}$ is a element of A_{LR} and A_{RL} , respectively, then $M \ominus N = (m - n, \alpha + \gamma, \beta + \delta)_{LR}$.

(2) If $M=(m,\alpha,\beta)_{LR}$ and $\tilde{1}=(1,0,0)_{RL}$ is a element of A_{LR} and A_{RL} , respectively, then $\tilde{1} \ominus M=(1-m,\beta,\alpha)_{RL}$.

Using the proposition 2.5(2), we can the following complement of L-R type fuzzy numbers.

Definition 2.6 Let $M=(m,\alpha,\beta)_{LR}$ and $\tilde{l}=(1,0,0)_{RL}$ be a element of A_{LR} and A_{RL} ,

respectively. The complement \overline{M}^* of M is defined by $\overline{M}^* \equiv \widehat{1} \ominus M = (1-m,\beta,\alpha)_{RL}$

3. Type-two fuzzy cardinality.

Let $X=\{x_1, x_2, \dots, x_n\}$ be a finite set. Using the set-theoretic operations of L-L type fuzzy numbers on [0,1], we define the following new concept of type-two fuzzy cardinality.

Definition 3.1 Let $F: X \rightarrow A_{LL}$ be a type-two fuzzy set and $F(x_k) = M_k = (m_k, \alpha_k, \beta_k)_{LL}$ for $k=1,2,\cdots,n$. Then, a type-two fuzzy cardinality of F is a function f_2 card $F: \{0,1,\cdots,n\} \rightarrow A_{LL}$ defined by

$$f_2 = \text{card } F(k) = \min^* \{M_{(k)}, \overline{M}^*_{(k+1)}\}$$
 for $k=1, 2, \dots, n$

where $M_{(1)}, M_{(2)}, \cdots, M_{(n)}$ are L-L type fuzzy numbers of M_1, M_2, \cdots, M_n arranged in decreasing order of magnitude of the normal points m_k , for $k=1,2,\cdots,n$, and $M_{(0)}=(1,0,1)_{LL}$, $M_{(n+1)}=(0,1,0)_{LL}$.

From this definition, we can obtain the following proposition.

Proposition 3.2 Let $F: X \rightarrow A_{LL}$ be as in the definition 3.1. Then we have that f_{2} card $F(k) = (m_{k}) \wedge (1 - m_{(k+1)}), \alpha_{(k)} \vee \beta_{(k+1)}, \beta_{(k)} \wedge \alpha_{(k+1)})_{LL}$ for $k = 0, 1, \dots, n$, where $m_{(0)} = 1$, $m_{(n+1)} = 0$.

Proposition 3.3 Let $F: X \rightarrow A_{LL}$ be a type-two fuzzy set. The

 $f_2 - \operatorname{card} F(k) = \begin{cases} \tilde{1} & \text{if } k = r \\ & \text{if and only if } F \text{ is a nonfuzzy set with } r \text{ elements.} \end{cases}$

In order to discuss properties of f_2 _card F of type-two fuzzy set F , we define the order(\leq) of L-L type fuzzy numbers and the convexity of f_2 _card F .

Definition 3.4 Let $M=(m,\alpha,\beta)_{LL}$ and $N=(n,\gamma,\delta)_{LL}$ be elements of A_{LL} . Then, we define the order \leq of M and N:

 $M \le N$ if and only if $m \le n$, $\alpha \ge \gamma$, and $\beta \le \delta$.

Definition 3.5 Let $F: X \rightarrow A_{LL}$ be a type-two fuzzy set. Then, f_2 card F is convex if

 f_2 _card $F(l) \ge \min^* \{f_2 - \operatorname{card} F(k), f_2 - \operatorname{card} F(r)\}$ whenever $k \le l \le r$.

Proposition 3.6 Let $F: X \rightarrow A_{LL}$ be a type-two fuzzy set and $F(x_k) = M_k = (m_k, \alpha_k, \beta_k)_{LL}$ for $k=1, 2, \dots, n$.

Assume that $M_{(0)} \ge M_{(1)} \ge M_{(2)} \ge \cdots \ge M_{(n)} \ge M_{(n+1)}$. Then, f_2 card F is convex.

Proposition 3.7 Let $F: X \rightarrow A_{LL}$ be a type-two fuzzy set and

$$F(x_k) = M_k = (m_k, \alpha_k, \beta_k)_{LL}$$
 for $k=1, 2, \dots, n$.

Assume that $M_{(0)} \ge M_{(1)} \ge M_{(2)} \ge \cdots \ge M_{(n)} \ge M_{(n+1)}$. Then, we have

$$f_2$$
 _card $\overline{F}^*(k) = f_2$ - card $F(n-k)$ for $k=0,1,\dots,n$

where $\overline{F}^*(x_k) = \overline{M}^*_k = (1 - m_k, \beta_k, \alpha_k)_{LL}$ for $k = 1, 2, \dots, n$.

4. References

- [1] D. Dubois and H. Prade, Fuzzy cardinality and the modeling of imprecise quantification, Fuzzy Sets and Systems 16 (1985) 199-230.
- [2] D. Dubois and H. Prade, Fuzzy sets and systems: applications, Mathematics in Science and Engineering, 114, 1978.
- [3] D. Dubois and H. Prade, Fuzzy real algebra; some results, Fuzzy Sets and Systems 2(1979) 327-348.
- [4] L.C. Jang, Cardinality of type 2 for fuzzy-valued functions, Korean J. Com. & Appl. Math. Vol.6, No.1, 1999.
- [5] L. C. Jang and Dan Ralescu , Cardinality concepts of type-two fuzzy sets, accepted in Fuzzy Sets and Systems, Feb., 2001.
- [6] A. Kandel, Fuzzy Mathematical techniques with applications, Wesley (1986) 28-81.
- [7] M. Mizumoto and K. Tanaka, Some properties of fuzzy sets of type 2, Inf. Control 31, 312-340.
- [8] A. Markova, T-sum of L-R fuzzy numbers, Fuzzy Sets and Systems 85(1997) 379-384.
- [9] A. Ralescu, A note on rule representation in expert systems, Inform. Sci. 38(1986) 193-203.
- [10] D.A. Ralescu, Cardinality, quantifiers, and the aggregation of fuzzy criteria, Fuzzy Sets and Systems 69(1995) 355-365.
- [11] A.L. Ralescu and D.A. Ralescu, Extensions of fuzzy aggregation, Fuzzy Sets and Systems 86 (1997) 321-330.
- [12] M. Wygralak, Fuzzy cardinals based on the generalized equality of fuzzy subsets, Fuzzy Sets and Systems 18(1986) 143-158.
- [13] C. Yu, Correlation of fuzzy numbers, Fuzzy Sets and Systems 55 (1993) 303-307.
- [14] R.R. Yager, Counting the number of classes in a fuzzy set, IEEE Trans. Systems. Man Cybernet. 23(1993) 257-264.
- [15] R.R. Yager, Connectives and quantifiers in fuzzy sets, Fuzzy Sets and Systems 40 (1991) 39-75.
- [16] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibilty, Fuzzy Sets and Systems 1(1978) 3-28.