A note on fuzzy continuous set-valued mappings.

K.Hur *, J.H.Ryou *, and Y.S.Ahn **

1. preliminaries

For a set X, let I^X denote set of all fuzzy sets, where I = [0,1]. Refer the concepts of union, intersection, complement, inclusion of two fuzzy sets to [6].

Now in order to deal with later sections, we list some definitions and results:

Definition 1.1[1]. Let $f: X \to Y$ be a mapping, $A \in I^X$ and $B \in I^Y$. Then:

(1) The inverse image of B under f, $f^{-1}(B)$ is a fuzzy set in X defined by for each $x \in X$.

$$[f^{-1}(B)](x) = B(f(x)) = (B \circ f)(x).$$

(2) The image of A under f, denoted by f(A), is a fuzzy set in Y defined by for each $y \in Y$,

$$[f(A)](y) = \begin{cases} \sup_{y = f(x)} A(x) & \text{if } y \in f(X), \\ 0 & \text{if } y \notin f(X). \end{cases}$$

By the above definition,

$$f: I^X \to I^Y$$
 and $f^{-1}: I^Y \to I^X$ are mappings.

Result 1.A[1,3]. Let $f: X \to Y$, $\{A_{\alpha}\}_{\alpha \in \Lambda} \subset I^{X}$, and $\{B_{\alpha}\}_{\alpha \in \Lambda} \subset I^{Y}$. Then:

$$(1) \ f^{-1}(\bigcup_{\alpha \in A} B_{\alpha}) = \bigcup_{\alpha \in A} f^{-1}(B_{\alpha}) \ , \ f^{-1}(\bigcap_{\alpha \in A} B_{\alpha}) = \bigcap_{\alpha \in A} f^{-1}(B_{\alpha}) \ .$$

$$(2) \ f\left(\bigcup_{\alpha\in A}A_{\alpha}\right)=\bigcup_{\alpha\in A}f(A_{\alpha})\ ,\ f\left(\bigcap_{\alpha\in A}A_{\alpha}\right)\subset\bigcap_{\alpha\in A}f(A_{\alpha})\ .$$

(3)
$$f(f^{-1}(B)) \subset B$$
, $A \subset f^{-1}(f(A))$, where $A \in I^X$ and $B \in I^Y$.

Proposition 1.2. Let $f: X \rightarrow Y$, $A \in I^X$ and $B \in I^Y$. Then:

(1)
$$f(A) = \emptyset$$
 if and only if $A = \emptyset$.
(2) $f(A) \cap B = f(A \cap f^{-1}(B))$.

Definition 1.3[4]. Let $A, B \in I^X$ and $x_{\lambda} \in F_{\mathfrak{p}}(X)$, where $F_{\mathfrak{p}}(X)$ denotes the set of all fuzzy points in X. Then:

(1) A is said to be *quasi-coincident with* B, denoted by AqB, if there exists an $x \in X$ such that $A(x) > B^c(x)$ or A(x) + B(x) > 1.

Also, we say that A and B are quasi-coincident (with each other) at x.

(2) x_{λ} is said to be *quasi-coincident with* A, denoted by $x_{\lambda}qA$, if $\lambda > A^{c}(x)$ or

 $\lambda + A(x) > 1$.

Result 1.B[4]. Let $A, B \in I^X$ and $x_{\lambda} \in F_{\rho}(X)$. Then :

- (1) $A \subseteq B$ if and only if $A q B^c$.
- (2) $x_{\lambda} \in A$ if and only if $x_{\lambda} \overline{q} A^{c}$.

Definition 1.4[1]. A mapping $f:(X,\Im)\to (Y,\mathcal{U})$ is said to be fuzzy continuous(F-continuous, in short) if $f^{-1}(B) \in \Im$ for each $B \in \mathcal{U}$. The mapping f is called a fuzzy homeomorphism(F-homeomorphism, in short) if f is bijective, and both f and f^{-1} are F-continuous.

Result 1.C[5]. Let $f:(X, \mathcal{I}) \to (Y, \mathcal{U})$ be a mapping. Then the following are equivalent:

- (1) f is F-continuous.
- (2) For each closed set B in Y, $f^{-1}(B)$ is closed in X.
- (3) For each member V of a subbase \mathcal{I} for \mathcal{U} , $f^{-1}(V) \in \mathcal{I}$
- (4) For each $x_{\lambda} \in F_{p}(X)$ and each neighborhood V of $f(x_{\lambda}) (= [f(x)]_{\lambda})$, there exists a neighborhood U of x_{λ} such that $f(U) \subset V$.
- (5) For each $x_{\lambda} \in F_p(X)$ and each q-neighborhood V of $f(x_{\lambda})$, there exists a q-neighborhood U of x_{λ} such that $f(U) \subset V$.
 - (6) $f(\overline{A}) \subset \overline{f(A)}$ for each $A \in I^X$.
 - (7) $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$ for each $B \in I^Y$.

From Result 1.C, we obtain the following result:

Proposition 1.5. Let $f:(X, \mathfrak{I}) \to (Y, \mathcal{U})$ be a mapping and $x_{\lambda} \in F_{\mathfrak{p}}(X)$. Then the following are equivalent:

- (1) f is F-continuous at x_{λ} .
- (2) $x_{\lambda} \in f^{-1}(B) \Rightarrow x_{\lambda} \in f^{-1}(B)$ for each $B \in I^{Y}$.
- (3) $x_{\lambda} \in \overline{f^{-1}(B)} \Rightarrow x_{\lambda} \in f^{-1}(\overline{B})$ for each $B \in I^{Y}$.

Notation 1.6[2]. Let X be a fts and let $A \in I^X$. Then:

(1) $I_0^X=$ { E:E is a nonempty fuzzy closed set in X } . (2) $I_0^A=$ { $E\in I_0^X\colon E\subset A$ } .

Definition 1.7[2]. Let (X,\Im) be a fts. Then the fuzzy Vietories topology \Im_v on I_0^X is generated by the collection of the forms $\langle U_1,\cdots,U_n\rangle_v$ with U_1,\cdots,U_n fuzzy open sets in X, where $\langle U_1,\cdots,U_n\rangle_v=\{\ E\in I_0^X\colon E\subset \bigcup_{i=1}^n U_i \text{ and } E \not\in U_i \text{ for each } i=1,\cdots n\ \}$.

The pair (I_0^X, \mathcal{I}_v) is called a fuzzy hyperspace with fuzzy Vietories topology(fuzzy hyperspace, in short).

Result 1.D[2]. Let (X, \mathcal{I}) be a fts. Then:

- (1) A is F-open in X if and only if I_0^A and $I_0^X I_0^{A^c}$ are F-open in I_0^X .
- (2) If A is F-closed in X, then I_0^A and $I_0^X I_0^{A^c}$ are F-closed in I_0^X .

2. Definitions and fundamental property

For each $A \in I^X$, let I^A denote the set of all fuzzy sets in X contained in A. Hence $I^A = \{ E \in I^X : E \subset A \}$.

Definition 2.1. A mapping is said to be *fuzzy set-valued* if its values are fuzzy sets in a given set.

Hence, for instance, $f: I^X \to I^Y$ and $f^{-1}: I^Y \to I^X$ are fuzzy set-valued (See Definition 1.1).

Definition 2.2. Let $F_1, F_2: Y \rightarrow I^X$ be fuzzy set-valued mappings. Then:

- (1) $F_1 \subset F_2$ if and only if $F_1(y) \subset F_2(y)$ for each $y \in Y$.
- (2) $F = F_1 \cup F_2$ if and only if $F(y) = F_1(y) \cup F_2(y)$ for each $y \in Y$.
- (3) $F = F_1 \cap F_2$ if and only if $F(y) = F_1(y) \cap F_2(y)$ for each $y \in Y$.

Clearly, the set $(I^X)^Y$ can be considered as a complete distributive lattice.

Definition 2.3. Let $F: Y \to I^X$ be fuzzy set-valued and $A \in I^X$. Then the *inverse* image of I^A under F, denoted by $F^{-1}(I^A)$, is defined by

$$F^{-1}(I^A) = \{ y \in Y : F(y) \in I^A \} = \{ y \in Y : F(y) \subset A \}$$

It is clear that $Y - F^{-1}(I^A) = \{ y \in Y : F(y) \notin I^A \} = \{ y \in Y : f(y) q A^c \}$ by Result 1.B(1).

From Definition 2.2. and 2.3, we obtain easily the following result:

Theorem 2.4. Let $F_1, F_2: Y \rightarrow I^X$ be fuzzy set-valued and $A \in I^X$. Then:

- (1) If $F_1 \subset F_2$, then $F_2^{-1}(I^A) \subset F_1^{-1}(I^A)$.
- (2) If $F = F_1 \cup F_2$, then $F^{-1}(I^A) = F_1^{-1}(I^A) \cap F_2^{-1}(I^A)$.
- (2a) If $F_{\alpha} \colon Y \to I^X$ is fuzzy set-valued for each $\alpha \in \Lambda$, then $(\bigcup_{\alpha \in \Lambda} F_{\alpha})^{-1}(I^{A}) = \bigcap_{\alpha \in \Lambda} F_{\alpha}^{-1}(I^{A}).$
- (3) If $F = F_1 \cap F_2$, then $F_1^{-1}(I^A) \cup F_2^{-1}(I^A) \subset F^{-1}(I^A)$.
- (3a) If $F_{\alpha} \colon Y \to I^X$ is fuzzy set-valued for each $\alpha \in \Lambda$, then

$$\bigcup_{\alpha\in\Lambda}F_{\alpha}^{-1}\left(I^{A}\right)\subset\left(\bigcap_{\alpha\in\Lambda}F_{\alpha}\right)^{-1}\left(I^{A}\right).$$

3. F-continuity of fuzzy set-valued mappings

Theorem 3.1. Let Y be a fts, I_0^X a fuzzy hyperspace and $F: Y \to I_0^X$ a fuzzy set-valued mapping. Then the following are equivalent:

- (1) F is F-continuous.
- (2) For each fuzzy closed(resp. open) set A in X, $F^{-1}(I_0^A)$ is open(resp. closed) in Y.
- (3) For each fuzzy closed(resp. open) set A in X, $Y F^{-1}(I_0^{A^c})$ is closed(resp. open) in Y.

Corollary 3.1. F is F-continuous at $y_0 \in Y$ if and only if both implications hold:

$$y_0 \in F^{-1}(I_0^G) \Rightarrow y_0 \in F^{-1}(I_0^G)$$
 whenever G is a fuzzy open set in X,

and

$$y_0 \in \overline{F^{-1}(I_0^K)} \Rightarrow y_0 \in F^{-1}(I_0^K)$$
 whenever K is a fuzzy closed set in X ,

Theorem 3.2. Let $f: X \rightarrow Y$ be F-continuous. Then:

- (1) $f^{-1}: I_0^Y \to I_0^X$ is F-continuous if and only if f is simultaneously F-closed and F-open.
- (2) If f is F-closed, then $f: I_0^X \to I_0^Y$ is F-continuous.

Theorem 3.3. Let $F_1, F_2: Y \to I_0^X$ be fuzzy set-valued. If F_1 and F_2 are F-continuous, then $F_1 \cup F_2$ is F-continuous.

Remark 3.3. Theorem 3.3 can be stated in the following local form: The union of two F-continuous mappings at y_{λ} is F-continuous at y_{λ} .

Corollary 3.3. The union $K \cup L$, considered as a mapping of $I_0^X \times I_0^X$ onto I_0^X , is F-continuous.

References

- [1] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968) 182-190.
- [2] K.Hur, J.R.Moon and J.H.Ryou, A note on fuzzy Vietories topology, Journal of Fuzzy Logic and Intelligent Systems, Vol. 10 No.2(2000) 129-132.
- [3] C.V. Negoite and D.A. Ralescu, Applications of Fuzzy Sets to Systems Analysis, Birkhäuser Verlag. Basel, 1975.
- [4] Pu Pao-Ming and LiuYing-Ming, Fuzzy topology I, J.Math.Anal.Appl. 76(1980) 571-599.
- [5] ______, Fuzzy topology II, J.Math.Anal.Appl. 77(1980) 20-37.
- [6] L.A.Zadeh, Fuzzy sets, Inform and Control 8(1965)338-353.