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Abstract
In this paper, we show that the fuzzy sample mean is a strong consistent

estimator for the expectation of a fuzzy random set taking values in the space

IT(I?ﬁ) of upper semicontinuous convex fuzzy subsets of R? with compact support.

1. Introduction

Since Puri and Ralescu [11] introduced the concept of fuzzy random variables,
there has been increasing interest in statistical inference for fuzzy stochastic
model, Schnatter [12] introduced the concept of fuzzy sample mean and fuzzy sample
variance in order to discuss the generalization of statistical methods to fuzzy data,
Yao and Hwang [13] studied point estimation for random sample with one vague data.
Recently, Grzegorzewski [4] proposed a definition of fuzzy test for testing
statistical hypotheses with vague data and Korner [9] also suggested a method to test
hypotheses about the expectation of a fuzzy random variable,

The purpose of this paper is to show that the fuzzy sample mean is a strong
consistent estimator for the expectation of a fuzzy random variable taking values in
the space F(R”) of upper semicontinuous convex fuzzy subsets of R’ with compact
support, To this end, strong laws of large numbers {for short, SLLN) for fuzzy random
variables should be considered. The SLLN for fuzzy random variables was obtained by
Klement et al, [8], Joo and Kim [7], Molchanov [10], and etc. OQur result generalizes

the results of earlier works to the case of a more general setting.



2. Preliminaries

Let K(R”) denote the family of non-empty compact convex subsets of the Euclidean
space R”. Then the space K(R?) is metrizable by the Hausdorff metric defined by
WA,B) = max{sup seainf sep la— 8, sup sepinf ca la—H}.
A norm of A=K(R”) is defined by | Al =h(A,{a})=sup 4| al. The addition
and scalar multiplication on K(R?) are defined as usual:
ADPB={a+b: a=sA,b=B), AA={da :acA}
for A,B=K(R”) and AcR.

Throughout this paper, let (2,3 P) be a probability space. A set-valued
function X2 — K(R”) is called measurable if for each closed subset B of R?,
X UB) = {w:X(o)NB + 0}
is a measurable set. It is well-known that the measurability of X is equivalent to
the measurability of X considered as a map from 2 to the metric space K(R?)
endowed with the Hausdorff metric 4. A set-valued function X' Q — K(R?) is called

a random set if it is measurable. A random set is called integrably bounded if

E| X || (oo. The expectation of integrably bounded random set X is defined by
E(X) = {Ef :f eL(2,R’) and Aw)eX(w) a.s.}.

The following SLIN for random sets was proved by Artstein and Vitale [1].

Theorem 2.1. Let {X,} be a sequence of independent and identically distributed
random sets, If E| X[ (o, then

lim h(—};e[-)’;=lx,-, EX) = 0 as.

3. Main Results

Let F(R?) denote the family of all fuzzy sets = :R? — [0,1] with the

following properties;
(1) 2 is normal, i.e., there exists x=R” such that u(x)=1:
(2) u is upper semicontinuous:
(3) wu is a convex fuzzy set, i.e., u(Ax+(1—A)y) > min(u(x),u(y)) for
x,y=eR? and 20, 1];

(4) supp # = {x=R? :u(x)>(0} is compact.



For a fuzzy set u in R? the ag-level set of # is defined by
: i <
Lau={ {x ru(x)za} if 0<a<l,

sSupp « if a=0.
Then, it follows immediately that weF(R?) if and only if L, u & K(R?) for
each a=[0,1). The linear structure on F(R?) is defined as usual;
(Dv)(2) = Sup r4y—.min(u(x),v(),

_[u(=/A) if A=0,
(’W)(Z)_{}‘m i A=0,

for u,v eF(R?) and leR, where Iy is the indicator function of {(}.

Lemma 3.1. For u =F(R?), we define

fu :10,11= (K(R"),h), fla) = L .u.
Then the followings hold:
(1) f, is left continuous on (0,1],

(2) f, has right-limits on (0,1] and £, is right-continuous at (.

We denote m by L ,-u. Then the right limit of f, at ¢ is L u.
Now we define, for J C[0,1].
w () = SUp g, aqe; ML u, L0
then it follows that for (= a{fg<1,
wla,B) = wla, Bl = WL, uL g,

and
Lemma 3.2. For each u eF(R?") and >0, there exist a partition
0=y <...Ca,=1 of [0,1] such that w  (a,.1,a) < e i=1,2, ... .7

Now, in order to generalize the Hausdorff metric on K(F*) to F(R?), we define

the two metrics d),d. on F(R?) by

1
di{u,v)= fo WL ¢ L ) do

d (%, v) = SUp gepe; B(L 4, L ,0)

Also, the norm of # is defined as | ull = do(w, L) = sUD yer !l x| .



A fuzzy set valued function X:02 —F(R?) is called measurable if for each closed
subset B of R?,

X UB)Xw) = sup.ep X(w)(x)
is measurable when considered as a function from £ to [(,1]. It is well-known

that X is measurable if and only if for each @ = [0,1], L, X is measurable as

a set-valued function. A fuzzy set valued function X2 —F(R?) is called a fuzzy
random set if it is measurable. A fuzzy random set X is called integrably bounded

if E| X| {oo. The expectation of integrably bounded fuzzy random set X is a fuzzy
subset of R’ defined by E(X)(x)= sup{e=[0,1]: x=E(L,X)}.

The fuzzy random sets X|,X,, ... ,X, are called independent if for every
closed subsets B, B,, ... ,B, of R’ the random variables XI_I(BI),
X5 Y(By), ... ,X, B, are independent in the usual sense. Then it follows that
X,X,, ... ,X, are independent if and only if the Borel ¢-fields
oL X as[0,11}, ofL X5 as[0,11}, ... ,0{L,. X, a<[0,1]} are independent in
the usual sense, Also, the fuzzy random sets X; X,, ... ,X, are said to have the
same fuzzy distribution as X if for every closed subsets B of R?, the random
variables X '(B), X, YB), ... ,X,'(B) have the same distribution as X !(B)
in the usual sense, The fuzzy random sets X,,X,, ... ,X, are called a fuzzy

random sample from the population with fuzzy distribution as a fuzzy random sets X

if they are independent and have the same fuzzy distribution as X. For a fuzzy

random sample X, X,, ... ,X, the fuzzy sample mean is defined by
% =Llaon x.
n #n i=1<% 4.

It follows that the fuzzy random sample is an unbiased estimator, i.e,

E(X,)=E(X). A strong law of large numbers by Klement et al.[8] implies that the
fuzzy saumple mean E is a strong consistent estimator for the fuzzy expectation
E(X) with respect to the metric ). The next theorem shows that the fuzzy sample

mean X, is a strong consistent estimator for the fuzzy expectation FE(X) with

respect to the metric d.

Theorem 3.4. Let {X,} be a fuzzy random sample from the population with fuzzy
distribution as a fuzzy random variable X, If E| X| (e, then

im de(X, EX) = 0 a.s.

]



Example 1. Let y=F(R?) be fixed and X(w)= u(x— Y(w)) be a fuzzy random set

with the same fuzzy distribution as the population, where Y 1is a random vector
taking values in R’ with E| Y| <o0. Since L, X(@)= Y(w)+L,u, we have
E(LX)=EY+ L,u. Hence, E(X)(x)=u(x—EY). Now if {Y,} is a random sample
from the population with distribution of Y and X,(w)= u(x— Y,(w)), then {X,}
is a fuzzy random sample from the population with fuzzy distribution of X, and the

fuzzy sample mean is X,= u(x— Y,), where “17,1———% Y; is the usual sample mean

1=

of Y;,Y, ... ,Y,. Hence, by the above theoren,

lim du(X,, BE(X) = lim du(ulx—Y,),u(x—EY)) = 0 a.s.,
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