Position dependence of quench progress in resistive superconducting fault current limiters

저항형 초전도 한류기에서의 위치에 따른 퀜치진행 변화

  • Published : 2000.02.01

Abstract

We fabricated resistive superconducting fault current limiters based on $YBa_{2}Cu_{3}O_{7}$ thin films and investigated position dependence of quench progress. The $YBa_{2}Cu_{3}O_{7}$ film was coated insitu with a gold layer and patterned into 1 mm wide meander lines by photolithography. The limiters were tested with simulated fault currents. Quench progress depended significantly on the position in the limiter with respect to electrodes. The limiters quenched fastest at the part farthest from the electrodes. the limiters quenched fastest at the part farthest from the electrodes and slowest next to the electrodes. This phenomenon was more prominent near the minimum quench current. At high fault current the quench started simultaneously on all parts of the limiters and the subsequent progress of quench depended only weakly on the position. The heat transfer from limiter meander lines to electrodes explains these results.

Keywords