Extended Q-larning under Multiple Tasks

복수의 부분 작업을 위한 확장된 Q-Learning

  • 오도훈 (동양 Systems) ;
  • 윤소정 (서강대학교 컴퓨터학과 인공지능 연구실) ;
  • 오경환 (서강대학교 컴퓨터학과 인공지능 연구실)
  • Published : 2000.04.01

Abstract

많은 학습 방법 중에서 비교적 최근에 제시된 강화학습은 동적인 환경에서 뛰어난 학습 능력을 보여주었다. 이런 장점을 바탕으로 강화학습은 학습을 기초로 하는 에이전트 연구에 많이 사용되고 있다. 하지만, 현재까지 연구 결과는 강화학습으로 구축된 에이전트로 해결 할 수 있는 작업의 난이도에 한계가 있음을 보이고 있다. 특히, 복수의 부분 작업으로 구성되어 있는 복합 작업을 처리할 경우에 기존의 강화학습 방법은 문제 해결에 한계를 보여주고 있다. 본 논문에서는 복수의 부분 작업으로 구성된 복합 작업이 왜 처리하기 힘든가를 분석하고, 이런 문제를 처리할 수 있는 방안을 제안한다. 본 논문에서 제안하고 있는 EQ-Learning은 강화학습 방법의 대표적인 Q-Learning을 개량하고 기존의 문제를 해결한다. 이 방법은 각각의 부분 작업 해결 방안을 학습시키고 그 학습 결과들의 적절한 적용 순서를 찾아내 복합 작업을 해결한다. EQ-Learning의 타당성을 검증하기 위해 격자 공간에서 복수의 부분작업으로 구성된 미로 문제를 통하여 실험하였다.

Keywords