데이터 마이닝을 위한 계층적 대표값 군집화 기법

A Hierarchical Representatives Clustering Technique for Data Mining

  • 안병주 (연세대학교 컴퓨터과학과) ;
  • 김은주 (연세대학교 컴퓨터과학과) ;
  • 이일병 (연세대학교 컴퓨터과학과)
  • 발행 : 2000.10.01

초록

군집화는 데이터 집합을 유사한 데이터 개체들의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 대부분의 군집화 기법들은 비교적 적은 양의 데이터를 대상으로 한 것이고 다차원 대용량의 데이터 처리에 관한 문제는 다루지 않고 있어서 데이터 마이닝을 위한 군집화 기법으로는 부적절하다. 따라서 본 논문을 통해 대용량의 데이터에 적용할 수 있는 새로운 군집화 알고리즘인 계층적 대표값 군집화(HRC) 기법을 제안한다. HRC는 자기조직화지도와 계층적 군집화 기법을 접목한 하이브리드 방법으로 두 단계에 거쳐 군집화를 수행한다. 첫 번째 단계에서 자기조직화지도를 통해 데이터를 요약하고, 두 번째 단계에서 요약된 대표값 정보만을 가지고 계층적인 군집화를 수행한다. 또한, 두 번째 단계의 계층적 군집화 적용시 양질의 군집을 발견하기 위해 군집간의 유사도를 측정하는 새로운 척도를 고안하였다. 그리고 실험을 통해 HRC와 기존 군집화 알고리즘이 발견한 군집의 질을 비교하여 성능을 평가했다.

키워드