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ABSTRACT

This paper presents a novel neural network structure to
the blind deconvolution task where the input {source)
L0 a system is not available and the source has any type
of distribution including sparse distribution. We em-
ploy multiple sensors so that spatial information plays
a important role. The resulting learning algorithm is
linear so that it works for both sub- and super-Gaussian
source. Moreover, we can successfully deconvolve the
mixture of a sparse spurce, while most existing algo-
rithms [5] have difficulties in this task. Computer sim-
ulations confirm the validity and high performance of
the proposed algorithin.

1. INTRODUCTION

Deconvolution is the reverse processing of convolution,
in which the task is t0 determine the impulse response
of the unknown system or the input signal (source).
When the input signal to a gystem is available, this
is a problem in systemn identification. In many impor-
tant applications, however, the input to a system is not
available, where the problem is called blind deconvolu-
tion. In this paper, we tackle the blind deconvolution
task in unsupervised learning manmer, that is why we
refer it to unsupervsed deconvolution. Unsupervised
deconvolution has a great deal of applications such as
digital communications, seismic deconvolution, image
restoration, and biomedical signal reconstruction.

The widely-used blind deconvolution method is a
larnily of Bussgang-iype algorithms (see [5] and refer-
encey therein) which has been successfully applied to
digital communications where the source is typically
sub-Ganssian. Recently ithere has been a great deal of
interest in sparseness [9). Although it was shown that a
super-Gaussian source could be recovered through the
maxirnization of kurtosis, no successful demonstration
was not reported, to our knowledge. In this letter, we
present a novel network structure and an assaciated
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simple algorithm for unsupervised deconvolution espe-
cially for a sparse source. One exemplary simulation
regult ig given in Section 4 to demonstrate the success-
ful result for & sparse source.

2. DECONVOLUTION: MULTIPLE
SENSORS

When the single observation is available, we have to
rely on higher-order statistics (for example, kurtosis)
for deconvolution task {7). It was shown that multi-
ple measurements (erther from multiple sensors or from
oversampling) provide extra information so that blind
identification can be achieved by second-order statistics
only [8]. Motivated by this result, we employ multiple
densors to obtain several measurements (spatial diver-
gity). The spatial diversity enables us to use linear
learning for deconvolution task.

Let us assume that there are two measurement sig-
nals are availahle.! Two different chservations (k)
and zs (k) are assumed to be generated through

wilk) = Hy(2)s(k), fori=1,2,

1

(1
where H:{z) = Egiu hipz~® and 27" is the delay op-
erator, i.e., 27 s{k} = s(k — 1). We asgume that H, (2}
and Hs(#) are co-primes. The source signal s(k) is as-
sumed to temporally uncorrelated Under these two
eonditions, the deconvolution task is to find an innova-
tion sequence of observations (3, 1, 2]. The approach
we take here is to construct a feedback network (see
Figure 1) to minimize statistical correlation between
yi(k) and y;(k + ) for any r #0, 4,5 = 1,2, One can
easily see that

E{y (k) k+ 1)} =0, (23

implies that y(k) = y1(k) + y=(k) is an innovation se-
quence (a white sequence). Note that an innovation

Vr£0,i,7=1,2

!Multiple sensors might improve the performance, but two
sensors are sufficient.
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sequence is not unigue. The white sequence scaled by
any congtant can be an innovation sequence. This cor-
responds to a scaling ambiguity in blind deconvolution.
Another ambiguity 13 an unknown delay. Thus the es-
timate of the source signal would be y(k) = as(k — d),
where o is & scaling factor and d is an unknown delay.

3. THE LEARNING ALGORITHM

For spatio-temporal decorrelation task, we consider a
linear feedback network (see Figure 1) where the input-
output relation is given by
z L
vilk) = k) + 3. Y wy,k)y(k-p), (3)

4=1p=1

where w;; (k) is the connection strength between y;(k)
and y;(k —p). Let us consider two observations: = (k),
xg(k) over a N-point, time block and the corresponding
two outputs: yy {k), y2(k)) over the same time black,
defined by the following vectors:

(51(0), 22(0), ..., (N — 1}, ma (N — 1)]7(4)
[:00), w2(0), - 1 (N — 1}, 2V — 1))7 (5)
Ag an optimization function, we chaose the Kullback-

Leibler divergence between the joint density of the net-
work output ()7} and the factorizable density ¢()) =

Hz_ Hkﬁ(l gi(y.(k)}. Thus the risk R({w; 1) is given

X =
y

il

R({wia,p})
_ 1 p(¥)
N f el log HH TToy aalws(k))

= ——L‘{logp W} ZE{logqm(yz)} (6)

=1

Note that the assumption on identical distribution was
used, ie.,

N-1
IT @:twal®)) = (@G} (7
k=0
To determine the Jacobian |22 |, (N ina
compact form
X =Wy, &)
where
I 0 e 0
—W, 1 e D
W= | oo
“Wyo1 —Wnog - I

where the matrix W, is a collection of w,, . One can
easily see that the Jacobian 45| = N, which can be
viewed as a volume preserving transformation [4]. Tak-
ing this into account, the risk (6) is rewritten as

R({wijp}) = =3 E{log q:(yi)}. (10)

i=1

For the minimization of {10}, we employ the stochastic
gradient descent. The learning algorithm for {w,; ,(k)}
has the form

‘le‘j,p(k + 1) = wtj,p(k) - qklﬁ’i(yi(k))?fj (}'7 "P): (11)

where 175 > 0 is the learning rate and ;(1;(k)) is de-
fined by

dlog q; (3. (k)) ‘

ek (12)

wal(yi(k)) = —
As a special case which we are interested in this paper,
we can use a Gaussian density model (zero mean and
unit variance) for g;(k), which results in @;:(y;(k)) =
¥i(k). Since the deconvolution is possible using only
linear learning, our approach does nol, require to know
the probability distribution of source. Although the
proposed method works for sub-Gaussian source, its
performance is worse than the well-known Bussgang-
type algorithms [5]. However, the proposed method
waorks surprigingly well for a sparse source , whereas
some existing methods do not. It was also reported
(6] that the linear learning was successful in separating
two speech signals which are typically super-Gaussian.

4. COMPUTER SIMULATIONS

We present one exemgplary demonstration. A source
signal having sparse distribution (kurtosis=273) was
used. (see Figure 2} Two sensors signal 2 (k) and (k)
were generated through the following FIR filters:

Hilz) = z7 4854 620 4.4
+3z—24+ LZ—-?G
Hi(z) = 9z7% 4+ 7271 4 5210 4 g2

+.227%6 4 12790, (13)

The signal to noise ratio (SNR) was 20dB. The length
of delay in the network (see Figure 1} was L = 35 The
learning rate was set as ng = .000L. All synaptic weighl,
matrices was initially set to zeros.

We have applied the algorithm based on the max-
imization of kurtogis in this task, and the result was
not successful. The successful result using the proposed
network and algorithm are shown in Figure 2. Tt can
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be observed that the recovered signal y{k) is almost
identical to the source signal s(k). Although one can
see small distortions in y(k), the point where the pulse
occurs is exactly recovered.

5. CONCLUSIONS

We have presented a novel neural network structure
and an associate simple learning algorithm for the un-
gupervised deconvolution task. Since we employ mul-
tiple sensors, it was possible to perform deconvolu-
tion using linear learning. The main contribution of
this letter is summarized as follows: {1} A novel neu-
ral network structure was incorporated into the un-
supervised deconvolution task; (2) A simple spatio-
temporal decorrelation algarithm was derived from an
information-theoretic viewpoint and was successfully
appiied to the case where the mixture was filtered ver-
sion of a spare source.
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Figure 1: The structure of the neural network for un-
supervised deconvolution.
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Figure 2: From top to bottom, the source signal (s(k),
mixtures z; (k), 22(k), and the recovered signal (k) are

shown. It is plotted over the duration [27001, 30000].



