Decreasing the Masking Effect by Learning Dependence Structures

의존성 구조 학습을 통한 masking 효과 축소

  • Published : 1998.10.01

Abstract

설명 기반 학습은 시스템 성능향상에 필요한 탐색 제어 지식을 학습하는 방법으로 많이 이용되고 있다. EBL은 과거의 문제풀이 과정을 일반화하여 학습한 다음 이와 유사한 상황이 발생할 경우, 문제풀이를 거치지 않고 학습된 해답을 신속하게 제시하여 성능을 향상시킨다. 그러나 새로운 문제 해결이 과거 문제 풀이 해답에 의존할 경우, 그에 대한 해답을 신속히 구할 수는 있지만 해답의 질은 학습 결과에 의존하지 않을 때보다 오히려 못할 수 있다. 이러한 현상을masking효과라고 한다. 본 논문에서는 의존성 구조를 학습, 이용하여 이러한 masking 효과를 축소하고자 한다. 의존성 구조는 현 상태에서 선택된 연산자가 이후의 문제 풀이에 끼치는 영향을 포함하는 구조로서, 이후 유사한 상황에 대해 선택될 연산자의 적합성 및 효율성을 평가하는 기준으로 사용될 수 있다는 점에서 masking 효과를 축소할 수 있다.

Keywords