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A Metamathematical Study of Cognitive Computability
with Godel’s Incompleteness Theorems
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Abstract
This study discusses cognition as a computable mapping in cognitive systems and relates Godel’s
Incompleteness Theorems to the computability of cognition from a metamathematical perspective.

Understanding cognition as a form of computation requires not only Turing machine models but
also neural network models. In previous studies of computation by cognitive systems, it is
remarkable to note how little serious attention has been given to the issue of computation by neural
networks with respect to Godel’s Incompleteness Theorems. To address this problem, first, we
introduce a definition of cognition and cognitive science. Second, we deal with Gédel’s view of
computability, incompleteness and speed-up theorems, and then we interpret Godel’s disjunction on
the mind and the machine. Third, we discuss cognition as a Turing computable function and its
relation to Godel’s incompleteness. Finally, we investigate cognition as a neural computable
function and its relation to Godel’s incompleteness.

The results show that a second-order representing system can be implemented by a finite recurrent
neural network. Hence one cannot prove the consistency of such neural networks in terms of first-
order theories. Neural computability, theoretically, is beyond the computational incompleteness of
Turing machines. If cognition is a neural computable function, then Godel’s incompleteness result

does not limit the computational capability of cognition in humans or in artifacts.

0. Introduction

The scientific analysis of an object requires that
it be observed within the context of a specific
model. Consequently, every model reflects the
specific concerns and methods of its respective
discipline. The development of computational
models for studying cognition is extremely
common these days and fundamental in cognitive
science.

The purpose of our research is to explore the
characteristics of neural computability and to
analyze from a formal perspective the relationship
between neural networks and  Gédel’s
incompleteness theorem. The computability theory
of neural networks is not just one more issue
among many to be debated in cognitive science,
but rather the most important underlying issue. An
analysis of neural computability will provide a

more proper understanding of cognition in humans
and in artifacts.
observe how little serious attention has been given
to the theme of neural computability in cognitive
science.

It is remarkable, however, to

Nevertheless, we have to caution ourselves in
that the world of formal science deals with the
formal relationship between real objects, whereas
empirical science is concerned with the real objects
themselves. Therefore, it is expedient for us to
perceive the object as being nothing more than a
conceptual guide in our search for the theory that
would be most appropriate for cognitive science.

1. Cognition in Cognitive Science
1.1 Cognition

By cognition, we mean a kind of computation.
Thus, we may think of it as a mathematical
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mapping from a class of times to a class of spaces.
Cognition is a plexus of properties rather than a
single concept. In this research, the domain of
cognition is defined by a class of discrete times,
and its range a class of mental spaces, where
mental spaces are restricted to the class of the
human mind. For a rigorous discussion on
cognition, we are restricting its scope and level to
that of mathematical thinking.

1.2 Cognitive Science

The new characteristic of cognitive science lies
in the study of the mind with respect to both the
brain and the machine. Therefore, we need to
consider the wide range of the mind, the brain, and
the machine in terms of cognition. Thus only a
valid theory for all these systems can lead to a
viable theory in cognitive science.

More formally, we may define cognitive
science as the study of the union of connectionist
and symbolic approaches. Since what we refer to
as the human mind is regarded as a product of the
human brain and the computing machine, we can
obtain two mathematical projections; one being
from the mind class to the brain class, called the
connectionist approach; and the other from the
mind class to the computing machine class, called
the symbolic approach. Thus, the former is
concerned with mind-as-computing machine,
whereas the latter is concerned with mind-as-
computing brain. The metaphors of the brain and
be used, respectively, to
designate these two approaches. Cognitive science

the computer will

can be studied on the assumption that we can learn
about the mind from studying the union of the
brain and the machine.

From this assumption, we arrive at two formal
models for an artificial mind: the Turing machine
for the symbolic approach and the neural network
for the connectionist one. Both models leads to the
fundamental question in cognitive science: How
does one determine whether or not human
cognition can be approached as artificial
cognition?

According to Roger Penrose [1994; 1997],
there are at least four viewpoints concerning the
relationship between mathematical thinking and

computation: A. All thinking is computation; B.

Awareness is a feature of the brain’s physical
action; C. Appropriate physical action of the brain
evokes awareness; and D. Awareness cannot be
explained by physical, computational, or any other
scientific terms. Penrose then analyzes that
Turing’s viewpoint is contained within A, that is,
the so-called “Strong AI” or “computational
functionalism,” and Godel’s view in D, that is, the
mystical category [1994, pp.127-129; 1997,
pp-112-113].

In spite of Penrose’s contribution to showing
the relevance of Godel and cognitive science, I do
not agree with him on the interpretation of Godel’s
mystical position. First, his classification is not
satisfactory in that viewpoint A is directed toward
computation and thinking; B toward physical
action, computation, and thinking; C toward
physical action, computation, and thinking; and D
toward physical action, computation, and thinking.
He should, therefore, have indicated at least

eight(23) viewpoints for a complete categorization.
However, Penrose does not give any reason as to
why the remaining viewpoints are omitted.
Secondly, less convincing is Penrose’s assertion
that Gédel’s viewpoint is mystical(D). Although he
uses Godel’s own statements [Godel 1951] as
evidence, the reference is very limited in that it
does not show that Godel refuted viewpoint A.
Contrary to Penrose’s claim, Godel’s conclusive
disjunction [Godel 1951] can be viewed as being
logically consistent not only with viewpoint D, but
also with viewpoint A.
Godel’s  viewpoint and the
implications of his celebrated incompleteness
theorems for cognitive science, we need to address
the disjunction because, according to Godel [1951,
p. 310] it is clearly inevitable with regard to both
the human and artificial minds.

To analyze

2. Gaodel on Cognitive Science
2.1 Goédel’s Incompleteness Theorems
We say that a formal system S is sound for a

formula H? in S whenever I—[? is true in the
structure of natural numbers if S proves H?. It
follows that a formal system S is consistent if and
only if §' is sound for H?. Here, we may consider

the H? formula as VyP(x,y) with a free variable
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x and a decidable predicate P.'Let Pf.(x,))be
a decidable binary predicate expressing that y is a
formula x in S.? Then
Vy—Pf,(x,y)is in the class of IT formulas.

proof of the

Godel constructed a l—I? sentence, i.e., a formula

without free variables, such as
G(S)=Vy—Pf(7,y),

where ¥ is the Godel number of G(S).

THEOREM (G&del’s First Incompleteness) If a
formal system S is consistent then G(S) is not
provable in S and —~G(S) is not provable in S

THEOREM (Godel’s Second Incompleteness)
If a formal system S is consistent then its own
consistency, denoted by Con(S), is not provable
in the system.

The logical result of Gédel’s theorems is clear.
However, far from obvious remain the implications
for the relationship between human cognition and
artificial cognition. A great amount has been
written on the implications of Godel’s
Incompleteness Theorems for human cognition and
artificial cognition, or for the mind-machine or
brain-machine controversy: Is the human mind, or
the human brain, essentially superior to machines?

The speed-up theorem[Godel 1936] is relevant
for increasing the range of the computing machine
by adding new instructions. It is well known that
Godel had already shown that a logic of a higher
order could prove formulas that a logic of lower
order could not prove. This theorem implies that a
certain function has no best algorithms. S.
Feferman [1998, p.229] articulates this speed-up
aspects of Godel’s Incompleteness Theorems from
Godel’s own footnote 48a [Godel 1931], in which
Gédel clarified: “undecidable propositions constructed
here become decidable whenever appropriate higher
types are added.” Feferman then calls it the Godel’s

' The class of H? formulas is one of the form
VxP(x) representing for all variables X the predicate

P holds, where the predicate P is a decidable property
of natural numbers.

2 Pf.(x,y)is a decidable relation between the two
natural numbers X and y, that is, an algorithm exists to
decide, for each choice of value of X and ), whether or

not Pfx(x,y) holds.

doctrine: the unlimited transfinite iteration of the
power-set operation is necessary to account for
finitary mathematics. According to him, the true
reason for the incompleteness phenomena is that
the formation of ever higher types can be continued
into the transfinite in systems using types. It can
lead to a new application of Godel’s theorems to
cognitive science.

Nevertheless, the finite description issue and
the consistency issue of cognitive systems in effect
remain unresolved. This presents two problem to
the cognitive scientist. One is to disregard the
computational model of neural networks. The other
is to erroneously apply Godel’s Incompleteness
Theorems to the issue of cognition in natural or
artificial systems. One of the best ways to avoid
this problem is to analyze Godel’s own view on
both the human and artificial minds. To understand
Godel’s viewpoint is one thing, to use Gdodel’s
theorems is another. It is thus necessary to
precisely distinguish Godel’s own argument from
so-called Gddelian arguments.

2.2 Godel’s Disjunctive Conclusion

According to Godel, there seems to be two
alternatives on the equivalence of the human mind
and finite machines. Godel asserted that the
following disjunctive conclusion inevitable with
respect to the undecidable:

Either mathematics is incompletable in this sense,
that its evident axioms can never be comprised in a
finite rule, that is to say, the human mind (even within
the realm of pure mathematics) infinitely surpasses the
powers of any finite machine, or else there exist
absolutely unsolvable diophantine problems of the type
specified (where the case that both terms of the
disjunction are true is not excluded, so that there are,
strictly speaking, three alternatives). It is this
mathematically established fact which seems to me of
great philosophical interest. [italics in original, Godel
1951, p.310]

For Godel, it is the intuitionists in the
foundation of mathematics who assert the first
alternative of the disjunction and negate the second
part. Godel regarded finitists as opponents of the
first disjunctive term. Epistemologically, these
terms are more precise expressions rather than
mechanism or anti-mechanism. Thus, for
intuitionists and finitists, the theorem holds as an
implication rather than a disjunction [see Godel
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1951, footnote 15]. Such a disjunctive conclusion
illustrates that Godel’s position cannot be reduced
to a mystical one.

The first alternative,
necessarily mean that the incompleteness theorems
preclude the existence of an idealized Al produced
by a finite rule[Godel 1951, p.312]. Although
Godel did not accept Turing’s argument[Godel
1972, p.306], he never claimed that the theorems
refuted Turing’s mechanistic view of mind.

however, does not

Intuitionists and finitists focused on only one
Godel refuted one
logical implication. Those alternatives were not
mutually exclusive. Rather, Godel was firmly
convinced of the truth of both(the third alternative).
We, therefore, cannot simply say that Godel’s
incompleteness theorems imply one specific
alternative.

alternative term, whereas

3. Cognition as a Turing Computable Function

Turing’s analysis transformed the term finite
procedure into the term mechanical procedure.
Consequently, a function is computable or
effectively calculable if it can be calculated by a
procedure, that is, Turing
machine. A function is Turing computable if it is
definable by a Turing machine [Turing 1936].
Formally, a Turing machine is a function 7M such
that for some natural number 7,

T™:{1,2,...,n} x {0,1} >

{01} x{L,R}x{0,1,2,...,n},

where L stands for “move one lefi” and R “move
one right.” We should note that Godel [1946;
1951; 1963] endorsed this concept as a generally
accepted property of effective calculability, but
not as a general recursion defined by himself.

Turing machine is a finite automata with
unlimited tape as a memory device. As we
remarked, it is mathematically equivalent to the
class of the Herbrand-Gddel-Kleene equation
system, i.e., the class of general recursive functions
[Godel 1934].

The Halting problem unsovable by a Turing

finite mechanical

* A Turing machine is specified by: (1) a list of
states called by Turing machine configurations; (2) a
finite alphabet of symbols including the blank; and (3) a
finite list of instructions.

machine is a question about Turing machines
themselves, causing a metamathematical rather
than mathematical question. The Halting function
for the Turing machine is a mechanical
implementation of Godel’s undecidable sentences.’
Turing [1936] demonstrated the limitation of
Turing computability, proving that there are
unsolvable problems, e.g., the Halting Problem, in
the Turing machine system. This is equivalent to
Church’s theorem that the decision problem for
first-order calculus is not solvable. These along
with Godel’s theorems show the limitations of the
first-order calculus system or of  recursive
machines. Thus, if the mind is a Turing machine
and cognition is a Turing computable function,
then the mind would not be able to compute the
Halting functions, because they would not be in the
class of cognition.

To overcome this computational limitation,
Turing [1939] proposed an extension of his
machine model. Referred to as the oracle Turing
machine, this Turing machine features a special
extra “read only” tape, called the oracle tape, on
which is written the characteristic function of a set
called oracle and whose symbols cannot be printed
over. This idea gave rise to the important issues
such as arithmetical hierarchy and relative
recursiveness.

The oracle model is clearly more powerful than
the old one, but it is also clear that the power
comes from the addition of a function that was
previously not computable. Hence, this led to a
recursive function that accepts members of the

uncountable NV as inputs, which raises the
problem of relative computations on recursive
infinite functions. The extension model, however,
still cannot give us any real idea of how to compute
the Halting function [Parberry 1996}. Moreover,
such an infinite machine is beyond the scope of our

“ There is no Turing machine M such that, for all
¢ and A1, if the Turing machine Godel-numbered e

produces something on input 7 then M produce O on
input (e, n), if the Turing machine Godel-numbered
€ produces nothing on input 7 then M produce 1 on
input (€,7n). This result is known as the effective

unsolvability of the Halting Problem for Turing
machine.
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debate, for it does not satisfy the assumptions
underlying the finite machine, the type specified, or
the consistency condition.

4. Cognition as a Neural Computable Function

The term “neural networks” may refer to the
circuitry of real brains. By a neural network, we
mean a formal model of the brain rather than an
actual brain. A classical neural network is said to
be a collection of MP(McCulloch-Pitts) formal
neurons [Arbib 1987]. Unifying the studies of
neurophysiology and mathematical logic, W.
McCulloch and W. Pitts [1943] formulated a
formal neuron model as a threshold unit that could
act as a control device for any Turing machine.
McCulloch and Pitts offered a brain model of the
computable, whereas Turing offered a mind model
of the computable. It is well known that the MP
neural network is equivalent to finite automata
[Kleene 1956] and that any finite automaton can be
simulated by a MP neural network [Arbib 1964;
Minsky 1967]. Thus any computation by a
Turing machine can be performed by a neural
network [Franklin & Garzon 1991].°

Formally, a neural network is regarded as an
arbitrarily graph of a mapping. If the nodes, the
formal neurons, are finitely numbered, then the
neural network is finite; otherwise, it is infinite.
Like the Turing machine, the language of finite
neural networks consists of finite alphabets, has
some activation rules as the inference rule, such

that y(¢+1)=1ifand only if D x,w ()26,

wherex is inputs, y one output, =12 ... time
scale, & threshold, and w weights. We may
define a finite neural network as a 5-tuple
NN =<V,X,Y,E,g>, where V is a finite
ordered set of nodes, XNV =& is a set of

inputs, YcV is a set of outputs,

* The input-output relation in the McCulloch-Pitts
neural network MP acts as a kind of Boolean function.
Thus there are non-computable functions such as XOR
function, i.e., the exclusive or predicate [Minsky &
Papert 1988]. However, MP can compute any Boolean
function, (1) if the interaction of inputs to neurons is
allowed for the given MP neural network [Arbib 1964];
and (2) if the hidden units are employed [Rumelhart,
Hinton, & Williams 1986].

<VUX,E>is a weighted graph, and
gV > F is a node assignment function (F is
the node function set). Thus, this can be
characterized by a function to a set of outputs from
a product of input set, weight set, and threshold set.

Theoretically, neural ntworks with even
Boolean weights are more powerful than the
Turing machines. The computability of these
neural networks has been explored by scholars
such as S. Franklin and M. Garzon [1996] and H.
Siegelmann and E. Sontag [1992]. Franklin and
Garzon prove that the Halting problem for the
Turing machine is solvable in an infinite recurrent
Boolean neural network. The Halting function is
thus computable in this neural network, and hence
the computability of neural networks is greater than
Turing computability [Garzon 1995]. Siegelmann
and Sontag prove that any function computable by
a Turing machine can be computed by a finite
recurrent neural network with rational weights.
They show that their model can simulate a
multitape Turing machine in linear time.

These results are convincing. However, they
are possible because of the infinite property in their
neural network model. Similarly, this property of
infinitude may give rise to a certain Turing
computability for the Halting function if the
uncountable infinity for the oracle Turing machine
is allowed.

If all the results of neural computability
discussed here are accepted for the computability
of the mind, one could clearly say that the mental
computability of a neural network goes beyond the
mental computability of
However, for a rigorous analysis of mental
computability as neural computability, we must
investigate the consistency of the finite neural
networks that have been specified.

In order to analyze the consistency of a finite
neural network, we need to introduce some
preliminary metamathematical theorems to classify
the order of the systems. These theorems include
the Compactness theorem, the Lowenheim-Skolem
theorem and the Lindstrom theorem. The
Compactness theorem states that a set of sentences
has a model if and only if each finite subset of the
set of sentences has a model. The Lowenheim-
Skolem theorem shows that if a set of sentences

a Turing machine.
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has a model then it has an at most countable model.
The Lindstrom theorem proves that the first-order
formal system is the maximal system that satisfies
both the compactness theorem and the Lowenheim-
Skolem theorem.

By the Lindstrdm theorem, we can claim that
the class NN of finite neural networks is not first-
order definable. To do this, it is enough to show
that VN is not a compact system if it is consistent.
If NN is consistent, then it has a model, and hence
all connection relations between nodes must be
defined in NN. It is, however, observed that the
collection of directed graphs of NN is not first-
order definable. Let NN be the class of finite
recurrent neural networks. There exist a connection
that is not definable in NN. Let
connection,(x,y)  define the predicate

expressing “there is a connection from node x to

node y of length »n.” Then we have

{—connection,(x,y):n =1} which logically
satisfies ~connection, (x,y), forconstants d,

b in NN. Suppose NN is a first-order system.
Then, by the Compactness theorem, there must be
such that

a natural number k

{—.connectionn (a,b)1<n< k} logically

satisfies —connection,(a,b). However, this is

not valid. Hence, the predicate is not definable in
the graphs of NN. Consequently, the connection
relation of NN is not definable in NN, and thus
we have a contradiction. Hence, NN is not a first-
order system and is not compact.

In the representation power, we can claim that
the finite neural network NN is more powerful
than the first-order representing system such as
Peano Arithmetic and the Turing machine. It is

enough to prove that NN represents a I_I? formula.

Take the formula Vy—Pf(x,y) in section 2.1.
The expression,
vy =Pf(x,»,)

Computation[x,,y,,X,,,]

Vy,—=Pf(x,,9,)
is not representable in any first-order (sequential )
computing system. This expression with a

branching quantifier is equivalent to a second-
order expression,

3P, 3P, Computation[x,, F(x,),x,, P,(x,)].
This formula is not representable in the first-order
systems since it is being quantified over a set of
variables. formula is
representable in NN because connectionist formal
systems can compute many things simultaneously.
Hence, NN is not a first-order but second-order
formal system. Moreover, even in the case of the
Godel Con(NN) = Vy-Pf(y.y).
where ¥ is the Godel number of Con( NN), there
is no reason why NN cannot compute the Godel
of NN. Although x,=x,, no
contradiction appears.

NN is not a first-order system. But suppose
that NN were a first-order system. By Godel’s
Second Incompleteness Theorem, NN is not a

However, the same

sentence

sentence

consistent system because it can compute such a
Godel sentence.

5. Conclusion

Main results may be characterized as follows:

1. Godel’'s Incompleteness Theorems are
consistent with his Speed-up theorem,
Doctrine, and Disjunctive conclusion.

2. Godel's view on the human mind and the
finite machine asserts “Disjunctive

Conclusion” not a specific alternative.

3. A recurrent finite neural network is a
second-order, not first-order formal
system.

4. Neural computability goes beyond Turing
computability with respect to Godel’s
incompleteness results.

5. In terms of neural computation, Godel’s
Incompleteness  implies neither the
superiority of human cognition to artificial
cognition nor the equivalence of them.

6. Godel’s Incompleteness shows that the
cognitive computability requires an ever
higher computability.
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