AolHE A2/ AL FHst &4 A2

ol 4 &
AgAddsta A4A7]3 8y
A} 02-2210-2629
Eamil: jacho@ee.uos.ac.kr

URL: http://ee.uos.ac.kr/” jacho

1999 6949 (&)

W3 AsHRAI2E ©§3] 99 &4 e
GoFdidta e v

S

oF Aryuday ¢of 99 @ Geds

[

19994

|°I°l’.‘!§_ AT WA I

Raisin Bread

Intelligent agents are ninety-nine percent computer science and one
percent Al (Etzioni 1996).

ool dE ] 9

An agent is a computer system, situated in some environment, that is

capable of flexible autonomous action in order to meet its design
objectives (Wooldridge and Jennings 1995).

o situatedness: the agent receives sensory input from its environment and
can perform actions which change the environment in some way

e autonomy: the system is able to act without the direct intervention of
humans and has control over its own actions and internal state.

o flexible: responsive, pro-active, social

N\ y

o3 gePusaw ¢ 99 &4 ey

-35-




l°|°lH.E_ AT 95 WA (Jennings, Sycara, and Wooldridge 1998)'

e Artificial Intelligence:

— Planning systems: first principles
— Behavioral AI (Reactive Al, Situated Al): subsumption architecture
— Hybrid architecture: deliberative + reactive

Practical reasoning agents: belief-desire-intention (BDI) model
o Object and Concurrent Object Systems:

— Objects can have control over their own internal state, but not it’s behavior.
— Agents supports the notion of flexible (reactive, pro-active, social) autonomous behavior
— Agents are each considered to have their own thread of control
e Human-Computer Interfaces:
~ The view of computer programs as cooperating with a user to achieve a task, rather than
acting simply as servants

— expert assistants, digital butlers

N Wy

o3 ArYgusad o '99 &A o4y

>

1999d

a A
|Multi—Agent Systems (Bond and Gasser 1988) I

Distributed Problem Solving (DPS)

considers how a particular problem can be solved by a number of modules, which
cooperate in dividing and sharing knowledge about the problem and its evolving solutions.

Multi-Agent Systems (MAS)

is concerned with the behavior of a collection of possibly pre-existing autonomous agents
aiming at solving a given problem.

o each agent has incomplete information, or capabilities for solving the problem, thus
each agent has a limited viewpoint

o there is no global system control
e data is decentralized

e computation is asynchronous

N Y

o3 JrYyu2ae ¢y 99 &4 ¢

-36-




lPitfalls of Agent-Oriented Development (Wooldridge and Jennings 1998) I

e You oversell agents

e You don't know why you want agents

e You don’t know what your agents are good for

* You believe that agents are a silver bullet

o You forget you are developing (distributed) software
e You decide you want your own agent architecture

e Your agents use too much Al

e Your agents have no intelligence

* You have too many (or too few) agents

e The tabula rasa

e You ignore de facto standards

\ S

o3 APYNAAY oY 99 oA Geos

[+

19994

Agent theory

o A specification for an agent.

o The construction of formalisms for reasoning about agents, and the properties of
agents expressed in such formalisms.

Agent architectures

e Software engineering models of agents

e The construction of computer systems that satisfy the properties specified by agent
theorists.

Language

e A system that allows one to program hardware or software computer systems in
terms of some of the concepts developed by agent theorists.

e Software systems for programming and experimenting with agents.

4 y

¢ qyPuazy 4y 99 e s

-37-




ICMAS’98: Third International Conference on Multi-Agent Systems
(http://cosmos.imag.fr/ MAGMA /ICMAS98/)

Agents’99: Third International Conference on Autonomous Agents
(http:/ /www.cs.washington.edu/research /agents99/)

ATAL-99: Sixth International Workshop on Agent Theories, Architectures, and
Languages
(http:/ /www.elec.qmw.ac.uk/dai/atal/)

PRIMA’99: Second Pacific Rim International Workshop on Multi-Agents
(http:/ /www.lab7.kuis.kyoto-u.ac.jp/prima99/)

CIA-99: Third International Workshop Cooperative Information Agents
(http:/ /www.informatik.tu-chemnitz.de/ klusch/cia99.html)

N Y

o3 4ePeAaY ¢ 09 @A 4€H

@

19994

AolAE &8 2o

o Industrial Applications e Commercial Applications
— Manufacturing — Information Management
— Process Control — Electronic Commerce
— Telecommunications — Business Process Management
— Air Traffic Control ¢ Entertainment Applications
~ Transportation Systems — Games
e Medical Applications — Interactive Theater and Cinema
— Patient Monitoring
— Health Care

\. y

Mz Ayl A stal ‘99 #M e

-38-




|°|°M!E FEo) ¥Y il"JAH}'

® Real-time execution e Task migration

¢ Interruptible execution o Goal-driven and data-driven behav-
ior
e Multiple foci of attention

e Checkpointing and Mobility
e Hierarchical plan refinement and re-

vision (mix and match strategies) e Explicit strategy articulation

e Purposeful behavior (minimizing e Situation summary and report

high-level plan revision) e Restrainable reactivity

o Adherence to predefined strategies

\< w

¢ APARAZY 08 09 &4 qeds
19994 10
IPRS System Structure (Ingrand, Georgeff, and Rao 1992) I
MONTTOR
e World Model
1 ) (Database)
DATABASE KA LIBRARY
(BELIEFS) (PLANS) SENSOR o Goals
INTERPRETER o Knowledge
(REASONER) Areas
Pe—— (Procedures)
GOALS STRUGTURE EFFECTOR _
| e Intention
Structure
COMMAND
GENERATOR o Interpreter
. — _J
[T T Y] 99 @A ¢eds]

-39-



|Features of PRS for Reactive Systems.

o The semantics of its plan (procedure) representation, which is important for
verification and maintenance.

o Its ability to expand and act on partial plans.

o Its ability to pursue goal-directed tasks while being responsive to changing
patterns of events in bounded time.

o Its facilities for managing multiple tasks in real time.

s Its default mechanisms for handling the environment’s stringent real-time
demands.

o Its metalevel (or reflexive) reasoning capabilities.

y

o Jeyrae ¢ 99 & Gedsl
1999 12

\\

UM-PRS
University of Michigan Procedural Reasoning System

(Lee, Huber, Durfee, and Kenny 1994)

a C++ implementation of PRS.

general reactive agent architecture.

applied to both physical robots and software agents

tested over years of applications

y

43 ASARARY oo

-40-

'99 &4 e




A

K {
NAME: "Exsmple XA"
DOCUMENTATION: "A nonsensical KA"
PURPOSE: ACHIEVE goal_nmme $arg;
CONTEIT: FACT task_complete "False";
BODY:

FACT problem_solved $task $solved;

OR

{

TEST (== $solved "YES");
RETRACT working on_problem "True®;
}
{
TEST (== $solved "NO");
ACHIEVE problen_decomposed;
ATOMIC
{
ASSERT working _om_problem "True";
FAIL;
}
ASSIGN $result (s $arg $arg 5);
};
UPDATE (task_complete) (task_complete “True");

FAILURE:

.
UPDATE (ka_example_failed) (ka_example_failed "True");

EXECUTE print "Example failed. Bailing out"
}

l UM-PRS Example .

World Model: a database of facts
Goals: top-level goals, subgoals
Knowledge Areas (KA)

~ Name

— Purpose: goal

— Context: condition

~ Body: procedure

— Priority

Failure section

Actions: achieve, execute, query, test,
assert, retract, ---

Intention Structures: runtime state of
progress

Interpreter

J

o3 qyPgaua ¢

'99 &4 eds

19999

14

I UM-PRS Behaviors .

o Recovery from a failed context.

Incremental elaboration to identify appropriate actions.

e Suspension of one goal and pursuit of another.

Interruption by new goals.

Refocus due to a change of context.

o7 JEPuay ¢

-41-

v

98 oA s



| UM-PRS Applications I

o Physical Agents
e indoor and outdoor mobile robots (UGV)
o Software Agents

o University of Michigan Digital Library (UMDL)

Ship Systems Automation (SSA) — TAIPE project

Intelligent, Coordinated Situation Assessment

Multi-Agent Defensive Information Warfare

Rescue Operations Planning

O AeYvaji €8 09 4 e
19999 16

TAIPE

Tactical Assistant for Interaction Planning and Execution

(Durfee, Huber, Kurnow, and Lee 1997)

e many specialized agents needed to be able to collectively form, reason about,
and execute plans.

¢ plans needed to be generated, communicated, elaborated, visualized, analyzed,
executed, revised, and so on.

Planning Content Language to support the development and execution of plans.

. py

¢ AyYuay ¢ 99 &4 ¢

~42-




IJAM Agent Architecture (Huber 1999) I

e Integrated, refined features of PRS, UM-PRS, and the Structured Circuit
Semantics (Lee 1995) representation.

e Additional functionalities: observer, checkpointing, mobility

A w

63 ATYLAILY ¢ 99 84 ¢
1990 18

Agent Goals

ACHIEVE: An achieve action causes the agent to establish a goal achievement subgoal for the
currently executing plan.

PERFORM: The agent checks to see whether the subgoal has already been accomplished. Only
if the goal has not been accomplished, the plan does subgoal.
If the agent detects (opportunistic) accomplishment of the goal (perhaps by another agent),

it will consider the subgoal action successful and discontinue execution of the plan
established to achieve the subgoal.

MAINTAIN: A maintain goal indicates that the specified goal must be reattained if it ever
becomes unsatisfied.

QUERY: A query action is functionally identical to an achieve action. It is provided to allow
the programmer to be more explicit about the semantics of the action’s goal.

WAIT: The wait action causes plan execution to pause until the specified goal is achieved or the
specified action returns successfully.

y

T Ay ALY 48] '99 eX ¢eds]

-43-




N

Plan Precondition: specifies the initial conditions that must be met before the plan
should be considered for execution.

Plan Context: specifies one or more expressions that describe the conditions under
which the plan will be useful throughout the duration of plan execution.

Plan Goal: specifies goal-driven behavior. This field’s contents specify the goal or
activity that successful execution of the plan’s procedural body will accomplish.

Plan Conclude: specifies data-driven behavior. This specifies a World Model relation
that should be monitored for change.

Plan Body: describes the sequence of actions, a procedure, to be taken in order to
accomplish a goal.

Plan Effects: specifies an atomic procedure that will be executed when the plan
completes successfully.

Plan Failure: specifies an atomic procedure to be executed when the plan fails. If the
plan fails, for example because the context fails, the agent interpreter will execute the
actions found in the failure section before switching to other plans or goals.

y

o3 ArPRAAYW ¢S]

99 &M o4

1999

20

S

Observer

o The observer is a lightweight plan that the agent executes between plan steps
in order to perform functionality outside of the scope of its normal
goal/plan-based reasoning.

e The Observer’s behavior is specified in a syntax identical to that of a plan
body in one of the files parsed during initialization.

e This procedure may contain any plan action or construct that a normal plan
body can contain except for subgoaling.

y

LAt S LEEL B 2]

-44-

99 & e




ICheclcpointing and Mobility I

functionality for capturing the runtime state of a Jam agent in the middle of
execution and subsequently restoring that captured state to its execution state.

o to periodically save the agent’s state so that it can be restored in case the
agent fails unexpectedly.

o to implement agent mobility, where the agent migrates from one computer
platform to another.

¢ to clone an agent by creating a checkpoint and restoring it execution state
without terminating the original agent.

. y

¢ JPguad ¢ '99 &4 gy

1999d 22

| UM-PRS¢} JAM I

UM-PRS

e satisfies most of the features requiring real-time interruptible execution,
multiple foci of attention.

e naturally supports hierarchical plan refinement and revision, purposeful
behavior, adherence to predefined strategies.

o demonstrated effective task migration capability.

. y

Ll e KRR B ‘99 &4 deqs

-45-




JA
e inherits all of the above capabilities and supports additional explicit
data-driven behavior, checkpointing and mobility.

e the explicit strategy articulation capability is strengthened by incorporating
the SCS execution semantics into Jam and is also supported partly by JAM’s
refined goal actions and plan conditions.

Other capabilities, situation summary/report and restrained reactivity are
especially required for coordinated agent plan execution and are being studied in
the context of explicit specification of execution semantics in the agent plan.

N y

o AT YuA2o ¢ 09 A ¢edY

19994

-

/R

I JAMS} WA}y I

Mobile Agent Architecture, JAM/Aglet

o Aglet’s Mobility (Lange and Mitsuru Oshima 1997)

e JAM’s Checkpointing and serialization

Applications of JAM/Aglet

o Believable agent

e Multimedia information gathering/filtering

[ y

o7 ATPYALY o 99 &N G@dsl

-46-




N

Bond, A. H. and L. Gasser (Eds.) (1988). Readings in Distributed Artificial Intelligence. San
Mateo, CA: Morgan Kaufmann Publishers. '

Durfee, E. H., M. Huber, M. Kurnow, and J. Lee (1997, February). TAIPE: Tactical assistants
for interaction planning and execution. In Proceedings of the First International
Conference on Autonomous Agents (Agents ’97), Marina del Rey, California, pp. 443—450.

Etzioni, O. (1996, August). Moving up the information food chain: Deploying softbots on the
world-wide web. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence, Portland, Oregon, pp. 1322-1326.

Huber, M. (1999, May). JAM: A BDI-theoretic mobile agent. In Proceedings of the Third
International Conference on Autonomous Agents (Agents '99), Seattle, Washington.

Ingrand, F. F., M. P. Georgeff, and A. S. Rao (1992, December). An architecture for real-time
reasoning and system control. IEEE Ezpert 7(6), 34-44.

Jennings, N. R., K. Sycara, and M. Wooldridge (1998). A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems 1, 7-38.

Lange, D. B. and I. R. Mitsuru Oshima (1997). Programming mobile agents in java — with the
java Aglet APL http://www.trl.ibm.co.jp/aglets/aglet-book /index.html.

W

o JryeAaw ¢8

‘99 A 4&94]

19994

26

o7 ArFRAaH 45

Lee, J. (1995, March). On the design of structured circuit semantics. In AAAI Spring
Symposium on Lessons Learned from Implemented Software Architectures for Physical
Agents, pp. 127-134.

Lee, J., M. J. Huber, E. H. Durfee, and P. G. Kenny (1994, March). UM-PRS: an
implementation of the procedural reasoning system for multirobot applications. In
Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS *94),
Houston, Texas, pp. 842-849.

Wooldridge, M. and N. R. Jennings (1995). Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10(2), 115-152.

Wooldridge, M. and N. R. Jennings (1998, May). Pitfalls of agent-oriented development. In
K. P. Sycara and M. Wooldridge (Eds.), Proceedings of the Second International
Conference on Autonomous Agents (Agents’98), pp. 385-391. ACM Press.

-47-

09 &4 g




