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INTRODUCTION

Spherical or cylindrical proportional counters are widely utilized to measure various radiation
quantities, such as radiation energy, radiation quality, and dose equivalent using tissue equivalent
(TE) gases [1,2]. To design the appropriate counters for each application, it is essential to know the
gas gain for gas filled proportional counters as a function of gas composition, pressure, voltage
applied and counter geometry. The aim of this article is to show a self-consistent methodology
using the Boltzmann equation, which enables us to describe accurately the electron multiplication
processes in cylindrical or spherical field geometries and to gain a physical perspective in
simulating the dynamic properties of the counters.

FORMULATION USING THE BOLTZMANN EQUATION

To describe the behavior of electrons in non-uniform electric fields in proportional counters,
we start with the general form of the Boltzmann equation which gives the spatio-temporal variation
of the electron distribution function f(r,v,t),
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where, r is the position of electron, v is the velocity, e and m are the charge and mass of electron,
and E is the electric field. J represents the collision operator that includes the electron molecule
collision processes [3]. Performing coordinate transformation into the cylindrical and spherical

configurations, the second term in Eq.(1) can be written as,
of _of _ 1af _ of

Vi—=V_ —+V

—+V 2-a
or "ot Troep Toz (2-2)

of of 1of 1 of
A% =V, =+ Vg ———t V,
or or r 06 rsin @ o¢
for the cylindrical and spherical cases, respectively. Here, (v,,v,,v,) and (v,,v,,v,) are the elements
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of the velocity vector v in their coordinates. Thus, integrating Eq.(1) over all spatial variables
except r, we can derive a partial differential equation for f(r,v,t) in one-dimension in space. Letting
the electric field E depend only on position r (i.e., E=(E_,0,0)=E(r)) and using that the spatial
segment dr is given by dr=dxdydz=rdpdzdr=r’sin6dddedr, the general form of the one-
dimensional equation arising from Eq.(1) is represented by
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where F(r,v,t) =r*f(r,v,t) (s=1 for cylindrical, s=2 for spherical). The geometry is shown
schematically in Fig.1. It should be noted that the case with s=0 corresponds to the parallel
geometry and the formalism for solving F(r,v,t) (=r*f(r, v, t) ) is equivalent independent of the field
geometry.

ARRIVAL-TIME SPECTRA METHOD
Next, we will relate the gas gain of the counters to the solution of Eq.(3). Usually, the gas gain G
of the proportional counters is expressed as [4],

InG = [a@)dr, )

where a is the ionization coefficient, and A and B are boundary of a line between which describes
the gas amplification region which follows the electric field lines. Typically, the parameter a(r) in
Eq.(4) is calculated empirically or estimated using simple theory that may be inaccurate for
complex gases. To represent the space-time evolution of the electrons in an amplification region
under the uniform electric fields, Kondo and Tagashira [5] proposed a general theory of electron
swarms including a method for describing the arrival-time spectra (ATS) of electrons. By
“swarms” we mean the stage of an electron avalanche in either space or time that is characterized
by a charge density that is low enough not to perturb the background electric field structure. In the
present study, the ATS method is applied to the non-uniform field conditions. In this method, an
equation describing the evolution of the swarm is introduced. The evolution equation is given by
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Here, N(1,t) = IF(r, v,t)dv = jrsf(r, v,t)dv, and the coefficients a%(r) (j=0,1,2...) are given by

taking successive moments with T(r) =t - (t) on the arrival-time spectra of electrons, N(r,t), as

(r)

follows:
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where N, (r) = N(r) = [N, t)dt.

It should be noted that Eq.(5) is a kind of continuity equation of electrons describing arrival-time
distributions at fixed position r, which is deduced by integration of eq.(3) over v after the division
by v,. The solution of the distribution function F(r,v,t) in eq.(3) can be represented as:

F(r,v,t) =Y g®(r,v) -(— %) N(1,1). (7
K

Substituting egs.(5) and (7) into Eq.(3) gives the following series of equations for g™(v)
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(K=0,1,2...) associated with the (5/8t)*,
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DISCUSSION

As is shown in Eq.(6-a), a%(r) (the lowest order parameter in Eq.(5)) exactly corresponds to
the ionization coefficient in Eq.(4), while N,(r) represents the total number of electrons passing
through a position r. If r is chosen to the anode radius, N, (r) ends up to be the gas multiplication
factor in the proportional counters. Therefore, one can obtain the multiplication factor (or gain) by
counting the arriving electrons at the anode surface. Positive ions remaining in tracks of the
electrons in the multiplication volume is also N, in total number, and the flux of these ions
contributes to the slow signal of the counters.

Conventionally, the ionization coefficient in Eq.(4) has been estimated from the data under the
uniform electric field and the steady-state current conditions. The equations derived above
illuminate a direct and natural way to analyze the electron multiplication process in the cylindrical
or spherical counters. Although it may be difficult to solve Eq.(8) actually as a function of position
1, this equation can be a general formula to lead to an accurate procedure for calculating gas gain in

the counters.

CONCLUSION

In this study, we have obtained the general expression of the Boltzmann equation for electrons
under the non-uniform field geometry in the proportional counters, and have shown the formalism
that gives the exact gas gain of the counters in a direct and self-consistent way taking advantage of
the arrival-time spectra (ATS) method.
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Fig.1. Schematic geometry of the proportinal counter. Here, a is the anode radius, and V represents
the gas amplification region. AS, and AS,, denote segments of surface area for r=a and a=r,,
respectively. AS,:AS =a°: )’ (s=1 for cylindrical, s=2 for spherical).
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