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Abstract

I An optimal control technique designed for simultaneous tracking and quality control for batch

processes. The proposed technique is designed by transforming quadratic-criterion based iterative learning
control(Q-ILC) into linear quadratic control problem. For real-time quality inferential control, the quality is
modeled by linear combination of control input around target quality and then the relationship between
quality and control input can be transformed into time-varying linear state space model. With this state
space model, the real-time quality inferential control can be incorporated to LQ control problem. As a
consequence, both the quality variable as well as other controlled variables can progressively reduce their
control error as the batch number increases while rejecting real-time disturbances, and finally reach the
best achievable states dictated by a quadratic criterion even in case that there is significant model error.
Also the computational burden is much reduced since the most computation is calculated in off-line. The
proposed control technique is applied to a semi-batch reactor model where series-parallelreactions take

place.
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1. Introduction

One of important objectives in operation of industrial batch
process is maintain the quality of end-product. A major obstacle
to achieving this objective is that on-line sensors for quality
measurement are very often unavailable. The current industrial
practice is to control the directly measured variables such as
temperatures and pressures at various locations so that they
track some pre-assigned trajectories, while eliminating the
disturbances at the source. The product quality is analyzed in
the laboratory after each batch run and the information is
relayed back to the operator for adjusting the condition of
upcoming batch runs -- based on some established guidelines
(e.g., SQC charts) or, simply, experience.

Motivated by this industrial approach, the research on batch
process control has thus far centered around the problem of
tracking a given reference trajectory for nonlinear systems.
Various nonlinear control methods have been suggested (Berber,
1996) while most industrial problems have been solved by
“‘gain-scheduling” PID controllers (Tan et al, 1997). Besides the
research on the conventional feedback control, a stream of recent
focused on the notion of iterative

research has learning

controlILC) (Bien and Xu, 1998; Chen, 1998, Moore, 1998),
which seeks gradual run-to-run improvements by feeding back
the error signals from previous batch runs.

This paper focuses on how the two approaches, the following
of reference trajectories and inferential (as well as
laboratory-analysis-based) control of quality variables, can be
merged. An obvious and straightforward way to implement the
two together is to have the quality controller determine the
reference trajectories for the tracking controllers. On the other
hand, by separating the two design, the trade-off between the
two controls cannot be made systematically. For instance, if the
process variables should be kept within certain bounds, it is not
clear how to reflect this requirement in the quality controller
design since the optimal design would depend on, among other
things, the performance of the tracking controller. In addition,
based on the economic considerations, one may wish to
systematically trade off the quality control performance for a
reduced deviation of relevant process variables from their
economic target values (or trajectories). Motivated by this, we
propose in this paper an integrated framework to design the two
controllers as a single unit.

The tracking controls are there not only to assure a stable and
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economic operation but also to provide some protection against
disturbances that would otherwise affect the final product
quality. This strategy would work well if all the disturbances
affecting the quality variables do so by first affecting the
controlled process (such as the heat transfer
disturbances affecting the temperature and thereupon the product
quality through kinetics). On the other hand, practical evidences
suggest that, due to often significant run-to-run changes in
batch ingredients and process behavior, maintaining consistent

variables

temperature and/or pressure trajectories alone does not render
consistent product quality. Feeding back the results of laboratory
analysis helps to combat sustained changes but not those
occurring on a run-to-run basis. As a way to improve the
quality control aspect of a batch process operation, one may
consider the option of inferential control, a strategy of predicting
the final product quality using the correlation with on-line
process measurements. The keystone in this approach is the
correlation model (called "soft sensor), which must reliably
predict the final product quality. Suggested methods for
developing the correlation model range from simple static linear
regression, such as the least squares and its variants (eg.,
partial least squares), to more elaborate optimal dynamic
estimation methods like the Kalman filtering (Lee and Datta,
1994, Russell et al, 1998) and methods based on nonlinear
regression tools like the neural networks (Qin, 1997).

The starting point of our development is our previous work
on Model Predictive Control for Batch Processes (BMPC) (Lee
et al, 1997), which was constructed by incorporating the feature
of ILC into the regular model predictive control (MPC) algorithm
(formulated based on a time-varying linear model description).
This algorithm, however, handles only tracking control of
measured process variables and has heavy computational burden
because the input solution should be calculated at every
sampling time.

Hence, the focus will be given here on how we can embed
quality correlation models (established through a data regression)
into the servo LQG algorithm combined with iterative learning
control so that the objective of inferential quality control can be
incorporated into the optimal control calculation.

2. Formulation

2.1 Modeling for process variable

The time-varying linear repetitive process can be generally
modeled as follows.

ADx () + B(D (D + wid)

x,,(t+ 1) (l)
C(Hx (D) + n (D, for t=[0, N]

()

where the subscript k is batch index.

Taking the difference between the k+1™ and the k™ for system
(1), the state space model of batch-wise differenced can be
obtained by

Ax,,H(H- 1)
e (D)

A( t)Ax,,ﬂ + B( t)Au,,+ l(t) + Aw,,+ l(t) (2)
C(t)dx,,+1(t) +An,,+1(t)

where
Ay (D) = 244200 — 2D
Aup (D) = w1 (D) —2u(d)
Awee (D = wpe (D —wi(D (3)
e () = v (D —3(D
Anpsy (D = np (D — 0 (D).

2.2 Modeling for quality variable

The linear regression model around reference trajectory can
be written as

AQ/H.I: EOID(t)Auk+1(t)+dk+l. (5)

It can be written using the integrating state z(t) as

2:(t+1) = 2,00+ D(Ddu(D+ wi(d
da (D = 2, (D +nfD (6)
dg(N) = 2N

Combining (2) and (5) yields
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The above (6) can be rewritten as
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2.3 Input calculation
Unconstrained Case :

The optimal input can be obtained by solving the following
servo-LQG problem:

min {Z[( CN =M= 7,(N)T
X( CN) x,(M— 7’&(1\0)

3 (10)
+ 'Z:(( C) z.(D— (D)7 QD

x((C() x4()— 7(D)
+ dul(® RAuH)}}

where
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The standard variational method or dynamic programming
approach can be used for the solution. The resulting solution is
given by

dul) = — Kpg() x,(D+ Kpp(f) mp(t+1) (12)

where
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The boundary conditions for (13) are seen to be

cTvy P cV)
cTwv P ». (.

S(N)
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(15)

4. Numerical Example

We consider a discrete-time batch process of which the total
run length is fixed at N sampling steps. Unlike in continuous
processes, operational modes of a batch process can vary with
time. For example, input variables may be varied
continuously over the entire batch run while others can be
manipulated only at a specific time or during a specific time
interval. The situation can be further complicated by the fact

that some output variables are measured at every sampling

some

instant while others only once every several sampling instances.
Some measurements may even be gathered in an apeniodic
manner. In addition, just as inputs, an output may be measured
over the entire batch run or only during a limited interval
End-product quality can be measured only upon the completion
of batch. Finally, some of the output variables are to be
controlled along specified trajectories while others are measured
only for monitoring purposes.

Figure 1 shows a hypothetical but conceivable pattern of a
the potential
complexity involved in representing a batch process operation.

semi-batch reactor operation and demonstrates
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Figure 1. A typical operation pattern of a semi-batch reactor.

4.1 Process description

We consider a jacketed semi-batch reactor where an
exothermic series—parallel first-order reaction (with respect to
each reactant ) takes place.

ave B ¢
. (16)
B+c * b

The following equations describe the reactor system:

D = —LB(T-T)+ QT
- I:fgfl kloe—El/RTCACB
VdH. -
— ke #FCyC O =T,
dve -
(_th)‘ = — Vkloe EI/RTCACB, CA(0)=CA]
AVED 4@y — Ve B/FC4Ca
— Vige ®FTCsCe,  Co(0)=0
AV ZtCC) = Vkye B/FTCCp — Vhne  ®FTC,C,
Cc(O) =0
dV for 31

av ~10
a = 9 QB(t)—{ Qp(9) for 231

with
UA/pC,=0.375( ¢ / min)

TB= 35(0C)

T1= ZS(OC)
Ca=1(moll 2)

AH}/.DCp=—28.50(aK' 2 [mol) (18)
AH,/pCy=—20.50C°K - £ | mol)

kip=5.0969x10'°( £ /mol - min) E;/R=12,035(°K)
kop=2.2391 X 10"( # /mol - min) E,/R=13,450(°K).

The reactor operation is displayed in Figure 2. A is charged
initially and the heat-up is followed until B starts to be fed at
t=31 min. The reaction commences at this point and continues
until the batch terminal time of t=100 min. During this period,
the concentration of A is sampled at every 10 min and
measured with a 5 min delay for analysis. The desired product
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is C and maintaining the final yield of C (which is V{(t)Cc(ty))
at a target value (42 mol) is the main objective of the operation.
We considered two manipulated variables; jacket temperature
and flow rate of B. The sample time for control was chosen to
be 1 min. Target value for V(t)C.(t;) was chosen as 42 mol.
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Figure 2. An overview of the operation of the reactor model.
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