C301 Characterization of Nickel-ligands in NiSOD from *Streptomyces seoulensis* by EPR Spectroscopy

Jin-Won Lee*, Yang-In Yim, In-Kwon Kim, Hwan Youn, and Sa-Ouk Kang

Laboratory of Biophysics, Department of Microbiology, College of Natural Sciences and Research Center for Molecular Microbiology, Seoul National University

The nickel-containing superoxide dismutase(NiSOD) has been purified from cells of the *Streptomyces seoulensis* grown on a medium containing several stable nuclear spin isotopes (61 Ni, 15 N, 33 S) and characterized by EPR spectroscopy. The nuclear spin (I=3/2) of 61 Ni induced well-resolved hyperfine structure in the EPR spectra of the purified enzyme, unambiguously identifying the observed signal as a Ni(III) species. The nuclear spin (I=1/2) of 15 N induced doublet instead of original triplet hyperfine structure, identifying the g_z triplet was originated from the nitrogen atom. And the enzyme prepared from the 14 N-histidine and 15 N-Ammonium sulfate enriched media showed normal g_z triplet, implying that the g_z triplet was due to histidine nitrogen. The nuclear spin (I=3/2) of 33 S induced apparent line broadening in the g_z region, strongly suggesting that one or more S atoms are also act as Ni ligand. And the investigation and simulation of EPR spectra of enzymes prepared from the 32 S-methionine, 32 S-cysteine and 33 S-sulfate showed possibility that the methionine as well as cysteine can acts as a sulfur ligand.