SL 203 Control of Circadian Rhythms and Photoperiodic Flowering by the *Arabidopsis GIGANTEA Gene* Deok Hoon Park¹, David E. Somers², Yang Suk Kim¹, Yoon Hi Choy¹, Hee Kyun Lim¹, Moon Soo Soh¹, Hyo Jung Kim¹, Steve A. Kay², and Hong Gil Nam*¹ ¹Department of Life Science, Pohang University of Science and Technology ²Department of Cell Biology and National Science Foundation Center for Biological Timing Photoperiodic responses in plants include day-length dependent flowering. Mutations in the Arabidopsis thaliana GIGANTEA (GI) gene cause photoperiod-insensitive flowering and alteration of circadian rhythms. The GI gene encodes a protein containing 6 putative transmembrane domains. Circadian expression patterns of the GI gene and the clock-associated genes, LHY and CCAI, are altered in gi mutants, showing that GI is required for maintaining circadian amplitude and appropriate period length of these genes. The gi-I mutation also affects light signaling to the clock, suggesting that GI participates in a feedback loop of the plant circadian system.