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Abstract
An important task for any software project manager is to be able to

predict and control project size. Unfortunately, there is comparatively
little work that deals with the problem of building estimation methods
for software size in fourth-generation languages systems. In this paper,
we propose a new estimation method for estimating for software size
based on minimum relative error(MRE) criterion. The characteristic of
the proposed method is insensitive to the extreme values of the
observed measures which can be obtained early in the development life
cycle.

In order to verify the performance of the proposed estimation method
for software size in terms of both quality of fit and predictive quality,
the experiments has been conducted for the dataset I and II,
respectively. For the data set I and II, our proposed estimation method
was shown to be superior to the traditional method LS and RLS in
terms of both the quality of fit and predictive quality when applied to
data obtained from actual software development projects.

1. Introduction

For managing software production, it is
particularly useful to be able to achieve an
accurate estimate of the scale of programs
being developed as early as possible. When

a program is developed, typically the size is
estimated experimentally with reference to
similar programs that have been developed
previously. Program production control,
including development management and
quality control, can be made more effective
if a way is devised to make these
experimental program size estimates more
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quantitative and formalized, as well as more
accurate. An important task for any
software project manager is to be able to
predict and control project size from
measures which can be obtained relatively
early in the development life cycle. Since
the estimated software size are used for
predicting the cost, development effort in the
software development projects.

Recently, there is increasing pressure to
develop and quantify measures of software
size for fourth-generation languages(4GLs)
systems that tend to be utilized for ‘data
strong’ applications. Demarco(l] made a
distinction between software development
systems that were characterized as being
"function strong’ and those that were 'data
strong’.

A number of proposals have been made to
date on formalized, model based methods for
estimating program size. One of the early
approaches is that of Chrysler[2], who
devised an estimation model based on the
influence of various program characteristics
on program size. One of the best-known
models is the function point (FP) method
proposed by Albrecht [3]. The FP method
classifies functions in the functional
specifications according to predetermined
categories, and assigns an FP number based
on the level of functional complexity. This
FP number is then adjusted by means of
productivity determinant factors before being
used to calculate the estimated program
size. Other researchers have come up with
methods similar to the FP approach or have
attempted to improve on it[4, 5, 6]. These
approaches has concentrated been upon
function strong systems or the function
aspects of systems, however, so that FP
approaches are inadequate for the 4GLs
systems. Jeffery et all7] found that a

prediction system based upon function points
was able to explain less than 40% of the
variation in effort. Although significant
effort has been devoted to strengthening the
counting practices associated with function
points{B], questions of subjectivity and
measure interdependence remain. Moreover,
function point counting is quite a complex
process that requires a degree of training.

Recently, Vemer and Tate[9] reported
upon their attempts to predict size and
effort required for a 4GL implementation.
Their solution was to use function points to
estimate the size of the application, convert
this into lines of code(LOC) and then to use
this figure as an input to the COCOMO
model. The results, especially the size
estimation, appear to have been quite
accurate although a note of caution is
required since Vener and tate were only
studying a single system. Borque and
Cote[10] describe an empirical study where
they attempted to predict the size of 4GL
systems based upon various metrics derived
from ER diagram. Using linear regression
they were able to develop effective
prediction systems although they noted the
need to calibrate the models to the specific
measurement  environment. A similar
approach was suggested by Ince et al[l11]
and Gray et alll2] and indeed our data
collection includes the raw counts required
for the more compiex synthetic metrics
proposed by these authors. However, the
prediction systems implied by their work
remain unavailable.

To cope with these difficulties, we
propose statistical estimation model for
software size in particular 4GLs systems on
the basis of the linear regression. The
traditional method employed by elementary
statistic books and most canned statistical
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software is that of least squares estimation.
In this case the fitted line is chosen so that
the sum of the squared differences between

an observed value, y; , of the dependent

variable and the predicted value 37,-, is
minimized, ie, min 2(s,~ % This is called

least squares (LS) estimation. In addition to
the traditional LS and the relative least
squares(RLS) estimation methods, in this
paper, we propose a new estimation method
for prediction software size based on
minimum  absolute relative error(MRE)

criterion.

2. Regression Analysis

In this section we review the traditional
regression techniques and propose the MRE
regression with minimum relative error
criterion so as to estimate software size In
this regression model, the metrics will
appear as independent variables and the
dependent variable will be program sizes.
Linear regression models are formed by
choosing the best subset from a set of
independent variables in order to explain as
much variation in the dependent variable as
possible. Coefficients for the independent
variables are produced by the traditional
method LS, RLS, and the proposed method
MRE regression techniques that attempt to
fit these variables to sample data.
Comparative results between LS and least
absolute value(LAV) methods and their
individual properties have already been
studies[13,14,15].

Several methods of selecting an appropriate

presented in  various

subset of independent variables that will not
introduce additional variance (or noise) in

the model have already been discussed by
McDonell et al. [16].

2.1 RLS Regression Analysis

The relative least squares(RLS) method
involves minimization of the sum of squared
errors relative to the oserved dependent
variable values[17). Moreover, note that the
RLS procedure can be formally reduced to a
regular LS regression model by taking the
following steps:

i ﬁj}(y‘%’_;’)z]: | 2,(1—%)’] )

where
y,-=b0+b1x1+b2x2+...+bkxk. By lettmg

yi=1 and y;=—j:—‘:, it follows that
t

yi = (bot+byx+bxat+...+bxp/yi
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where xy,=1/y;, x5=xul vy, x5=
Kol Viy oo X pe0i= % 1l ¥ie Following
substitutions, one can calculate min
[ gﬁl(yF— ;7)2] which  follows a LS
minimization process and can be easily
implemented.

2.2 MRE Regression Analysis
It has been found that minimization

results of the average absolute error of a fit

y=ARx) given by

AAE=% 3 1 -5 (3)

89 -



provide very little information about the fit’s
accuracy [18). Levitin [18] also adds that’ “in
order to get a better idea, one needs to
relate the size of errors to the values being
approximated”’. Furthermore, it is often
useful in estimation procedures to measure
the performance of a model in terms of its
relative error. The average of absolute
relative errors is an appropriate “loss
function” for determining the quality of the
prediction equation. The measure of average
relative error is defined as:

ARE= % i}‘ UT_;) ‘ (4)

ARE has been established to be useful as a
measure of model performance associated
with complexity metrics in order to identify
fault-prone software[19]. In the present
work, however, ARE is also used as a
measure of forecast quality among the
various estimation techniques. In this way,
uniformity is retained between the different
measurements of quality of fit and forecast
accuracy of the estimation methods. Once a
model has been fitted, the ARE of any
estimation method can be easily obtained by
computing equation (4). One can derive
Minimum Relative Error (MRE) estimators
of the parameters of the model by solving:

min 31 Gi= 53131 | = min[ 3 | 1-4 ]

- min[ 2]’ 1— b°+b1x1+b;xz+...bbxk.~ ]

min[ gl‘ 1_(%_*_ by | bory

Yi ¥i
Vi

letting y;=1 and
Vi=bghtbxst...+bixiy and following
substitutions, one can then solve

min[z]]y.'-—y/ﬂ] which is equivalent to

estimating the parameters of a model using
the least absolute value criterion (LAV).
The MRE regression technique can be
regarded as a weighted version of the LAV
method with the weights equal to
reciprocals of values observed.

3. Prediction of Software Size with
Metrics

3.1 General system Characteristics

The systems were built over a period of
five years by groups of senior students in
the Department of Information Science at
the University of Otago[l6). Every system
was built to satisfy the real requirements of
an external client, normally a small business
or department in a larger organization. Also,
dealt  with
processing, data retrieval and reporting, and

Each  system transaction
file maintenance activities performed by the
organization. On system delivery, the client
performed an acceptance test and review.
All projects satisfied the requirements of
both the client and the course
administrators. A wide variety of systems
was constructed over he period, in total,
more than seventy distinct working systems
were developed and reviewed.

The systems were all of small to medium
size, as illustrated by the following
indicators of scale: each system included an
average of eleven data entities and sixty
attributes; six reports were producted on
average by each system. In terms of code
product size, the smallest system was
comprised of 309GL source statements, the
largest contained more than 2600 statements,
and the average size was approximately
1100 code statements. One of the positive
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features of the sample is the degree of
commonality of several process attributes
across the set. All but a few of the systems
were built by groups of four developers; the
same development methodology was
employed in every case; all systems were
implemented using the same tool, the
Cognos 4GL Powerhouse; and the systems
were all of the same generic
class(transaction-oriented data processing
and retrieval systems). This commonality is
advantageous in that these factors can be
considered as constant in the analysis, a
condition not often encountered in software
size research. when they vary, factors such
as can clearly have an impact on system
size. Given that these potential contributors
may be treated as constant, the degree of
confidence adopted in regard to any size
relationships supported by the data will
consequently be greater.

3.2 Data Collection

A study by Sallis et. al.[16] will serve as a
constructive sample for the modeling
process. In this investigation, two product
sets included the system documentation and
the implemented code were examined in
order to collect the appropriate data.
Specification size measures were manually
collected from each System Proposal. Two
of the authors performed this task so as to
obtain as correct a data set as possible.
Each author undertook the collection task
independently, then the two data sets were
compared and any discrepancies were
identified and resolved. Within each set of
documents a number of measures were
extracted in order to address the following
questions:

@ is data model size related to the size
of the implemented system?

@ is functional model size related to the
size of the implemented system?

This approach was Dbased on the
assumption that consideration of the two
dimensions of data and function could
provide adequate. independent indicators of
system size. The measures collected were
coarse, in line with one of the objectives of
the study; that is, to test for the existence
of size relationships using high- level,
objective, and easily extracted indicators.
The measures of data model size collected if
this study were therefore:

@® the number of entities depicted in the
entity relationship diagram(ENT)

@ the number of relationships depicted in

the entity relationships diagram(RSP)

@® the number of attributes associated

with the entity relationships diagram

(ATB).

The functional model size measures were
of a similarly coarse nature:
©® the number of menus depicted in the
functional decomposition chart( MNU)

@ the number of data edit screens depicted
in the functional decomposition chart(EDT)
@ the number of reports depicted in the
functional decomposition chart(RPT)

@ the number of non-menu functions
depicted in the functional decomposition
chart (NMN)

@ the total number of functions depicted in
the functional decomposition chart(FDS).

The second product set examined was the
implemented code itself. All source program
files for each system were scanned
automatically by a parsing program to
extract the following actual code size
measure:

@ the total number of source statements in
the system (SIZ).

This measure excluded blank and
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comment lines of code, and counted run-on
lines with a continuation indicator as a
single statement. The extraction of the
measure was verified manually on a random
selection of ten programs by one of the
authors to ensure consistency and reliability.
No counting errors were identified by this
check. Of the 74 systems in the total
sample four were incomplete, in that full
specification documents were not available.
Consequently a usable data set of eight
specification measures and one
implementation measure was collected from

seventy systems.

3.3 Experimental Results and Analysis

1) Descriptive Statistics
General descriptive statistics for each of
the variables are shown in Table 1.

<Table 1>Descriptive statistics for each
measure

Measure Variable{ Mean |Skew [Qutliers

Data ENT | 11.6 | 0.78 2
Model RSP_| 10.2 | 0.91 1
Size ATB | 645 | 077 1
MNU | 56 | 212 6

Functional |__EDT | 120 | 1.22 4
Model RPT | 68 | 0.75 1
Size NMN | 188 | 1.06 3

FDS 244 | 0.96

Implemented
Code Size SI1Z  [1106.0] 1.0 20

The descriptive indicators highlight the
absence of significant skewing for all but
the MNU and EDT variables. The
coefficients of skewness is used as a
measure of asymmetry. Further analysis
using boxplot distributions enabled outliers
to be identified, with the outliers shown in
the right-most column of Table 1.

Given the small degree of skewing in
some of the distributions, correlation tests

were performed using the nonparametric

Spearman statistics so as to identify any
potentially useful linear relationships
between the specification size variables and

the implementation size measure, as well as

among the specification variables
themselves.
<Table 2> Spearman correlation

coefficients
(All significant at C.01 level,
* at 0.05 level, and ** at 0.1 level)

SIZ |[ENT| RHP |ATB |[MNUEDT | RPT {NMN

ENT {.4948

RHP | 4670 |.9525

ATB | 6635 [.6643 [ 6307

MNU {3827 (.3790 | 3741 | 3443

EDT |.6677 {6834 | 6382 | 6709 [.4818

2058 | 1750
RPT [.5271 @ | om 3537 |.2989 |.3631

NMN [.7171 [.5512 | 4977 | 6219 |.5024 1.8473 |.7800

FDS |.7227 {5616 | .5236 | 6123 |.6758 |.8251 |.7422 |.9632

The results are shown in Tables 2. Both
sets of correlation statistics provided
evidence of strong significant relationships
between several of the specification size
variables and the implementation size
measure. In particular, the relationships
between the ATB, NMN and FDS
specification measures and implementation
SIZ were strong ever. when tested with the
more conservative Spearman statistic. This
suggested that, for the range of system size
predictive
relationships might have been derivable.

considered here, potential
Some cross-correlation was also evident
among the specification size variables
themselves, suggesting that several of the
measures may have been assessing the

same size characteristic.

2) Regression Modeling

We would now like to explore the
application of these estimation techniques to
two data sets I and II which are randomly
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selected set of 50 observations. First, we
will model the relationship between a set of
the collected size measures and the actual
software size with the data sets. Second, we
scrutinize the predictive quality of the
model. From a regression modeling
standpoint there are some  profound
differences between two data sets I and IL
The presence of outliers in they values
representing program size is obvious in the
dataset I, whereas no outliers were identified
in the modeling process of the raw data for
the dataset IL

There was substantial variation in the
implemented code sizes or actual code size
measure which is the dependent variable in
the regression model. The independent
variables selected in the regression models
used in the present study were based on
statistical analysis conducted by McDonell
et al[16]. For the data set I and II, the data
model size ATB and the functional model
size NMN is the independent wvariables
selected.

To evaluate the fit of a regression model
to these data sets, there are two distinct
evaluation criteria that must be met. First,
the regression model must adequately
represent the linear dispersion of the data.
This is the quality of fit criterion.

<Table 3> Model quality of fit

ARE value ARE value
Estimation | for data set [ for data set II
Procedure {including (Not including
outliers) outliers)
LS 0.6688 0.6513
RLS | 03453 0.5586
MRE 0.3043 0.4409

Second, the model must make meaningful
future predictions. This is the predictive
quality of the model.

We will now examine the estimation
procedures for both quality of fit

consideration and predictive quality. To
assess the quality of fit of the estimation
methods in terms of ARE, each of these
methods was used to fit a regression line.
For the data set I in which outliers were
present, the MRE techniques produced the
lowest ARE indexes. As indicated in Table
3, the MRE methods appear to give a better
quality of fit than LS and RLS method.
The LS method had the highest ARE value
which is an indication of its vulnerability to
extreme data points. For the data set II,
which did not contain any outliers, the MRE
techniques demonstrated superior
performance over LS and RLS.

By observing the ARE values for each
technique, the MRE method appears to be a
good estimator in terms of fitting the best
line to data set I and II for a pair of
variables representing different metrics in
each dataset. The LS method exhibited
inferior performance in each data sets. The
predictive quality of each of the models will
assess the ability of these models to make
future predictions. We will now examine the
predictive quality of each of the estimation
techniques.

In the first case, the data set I was used
to evaluate the quality of fit for different
estimation techniques, the data set II was
reserved to forecast using previously
obtained regression equations, respectively.
Then the roles were reversed for data set I
and II with the dataset I was used to
derive the model and the dataset I to
validate it. Following such computations, the
ARE performance criterion was then
determined for the LS, RLS, and MRE
procedures. From Table 4, it can be seen
that the ARE results for data set I and II
indicate that from a model determined from
data set I and II, respectively. MRE method
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appear to give a better predictive quality
than the other estimation techniques.

<Table 4> Model predictive quality
* predictions of dataset II
(not including outliers),
*% predictions of dataset I
(including outliers)

ARE value* ARE valuex*
Estimation (using models| (using models
Procedure built from built from
dataset I) dataset II)
LS 1.6488 0.8013
RLS 1.2233 0.8486
MRE 07143 0.4409

4. Conclusions

This work shows that it is possible to
predict software size for 4GL system at a
fairly early stage in a project using simple
and objective counts derived from a
functional specification and data model. The
objective of this study was not to present a
definitive model for the prediction of
program size measures, but rather to
explore and evaluate various estimation
techniques for the creation of linear models
of software size. Results from the analysis
of the regression and estimation methods,
we found that MRE procedures possess
good properties from the standpoint of both
model quality of fit and predictive quality.
Since MRE method do not exhibit the
sensitivity to the perturbations of data at
the extreme values of the size metrics.

This study showed that it is possible to
predict the size of a 4GL implementation
from metrics derived from the functional
specification and ER model.

Predicting implementation size at such an
early stage in a software project is useful

for the practitioner since it gives important
insights into the effcrt required to develop
the project. Developers can usefully collect
simple measures derived from documents
available early in the development process,
for instance data models and functional

specifications.
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