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Structural Joint Damage Estimation by Neural Networks
Incorporating Advanced Techniques
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1. Introduction

Most of the damage assessment methods for large-scale frame structures consider the element-level damages,
however, the beam-to-column connections in a steel structure are more susceptible to damages than the other
parts of the structure. However, only a few studies have been reported on the estimation of the joint damages of
large-scale steel structures. This research deals with the modeling of damages for the beam-to-column
connections of a steel frame structure and the identification of the joint damages based on the modal data using
neural networks technique. The rotational stiffness of a beam-to-column connection of a frame structure is
represented by a zero-length rotational spring at the end of the beam element. The severity of the joint damage is
defined as the reduction ratio of the connection fixity factor. In this study, three advanced techniques are
incorporated to overcome the difficulties in the damage detection processes. The noise-injection learning
algorithm is used to reduce the effects of the noise in modal data. The data perturbation scheme is employed to
reduce the uncertainty and to assess the confidence level of the estimated damage. The concept of the
substructural identification is used for the localized damage assessments in a large structure.

2. Modeling of Semi-Rigid Connections and Joint Damages

The semi-rigid connections can be modeled by zero-length rotational springs at the ends of a beam as Figure 1.
The stiffness matrix of a beam element with semi-rigid connections at the ends can be obtained for the degrees of

freedom at the external nodes, {u}=<v,,0,,v,,0, >, as
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where the parameters f;’s are defined using the joint fixity factors (Y, and y,)as: f, =y, +7v, +7,Y,.
fz =Y[(2+yz)7 f3=371’ f4=372s f5=371727 f6=YZ(2+Y1)’ and f7=4—YIYZ’ in which the

joint fixity factors are defined using the rotational stiffnesses of the end springs and the beam (k,‘ s kr, and

3EI/L)as

k1=

y,zl/(1+2k£J , y2=l/(1+%] , 0<vy, and y,<1.0 (2)

In this study, the joint damage severity at node 7 (c,) is defined by the reduction ratio of the fixity factor of
the damaged joint( 'y, ) to the fixity of the intact joint(7, ) as

o, =1-y,/v,, , 0<a,<1.0 3)

where the fixity factor of the intact joint (¥, ) can be estimated using the intact joint rotational stiffness (%, )

which may be obtained on the basis of available database or experimental results.

3. Neural Networks for Joint Damage Estimation

In this study, a popular neural networks model called a multi-layer perceptron (MLP) or a back-propagation
neural networks (BPNN) is used for the identification of the damage parameters(see Figure 2). The concept of
the substructural identification is employed in the neural networks approach for the joint damage assessment of
large and complex structures (Koh ez a/ 1991).

The noise-injection learning algorithm(Matsuoka 1992) is also used to reduce the noise effects in the modal
data. The noise levels included in the training process may be determined by considering the accuracy of each
element of the input patterns. In this study, the noise levels for natural frequencies can be taken as smaller than
those for the mode shapes.

The effectiveness of the present damage estimation method using neural networks is examined employing the
concepts of the mean sizing error, the damage missing error, and the false alarm error (Kim and Stubb, 1996).

4. Numerical example

4. 1 Example Building Structure

A building frame structure shown in Figure 3 is used for the numerical simulation study to examine the
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effectiveness of the proposed approach. The beam and column sections are W24 x55and W14x 145, the
mass density is 7850kg/m’, and the elastic modulus is 210GPa . The substructure to be identified consists of
six beams and six columns as shown in Figure 3, where the damages are assumed to occur at the ends of the

beam members. The intact joint stiffness is assumed to be 3.0x10° N -m/rad for all the semi-rigid joints at
the ends of the beams. The mode shapes are assumed to be measured only at 15 translational DOF's for the first
two mode vectors in the substructure as shown in Figures 4 and 5.

4. 2 Neural Networks Architecture

A four-layer architecture of the NN has been selected from several trials as in Figure 2. The input layer
consists of 19 neurons, which include the lower 4 natural frequencies and the 15 translational components of the
second mode vectors for the substructure as shown in Figure 5. The first modal data are not used since they are
found to have little information on the joint rotational behavior of the substructure. The first hidden and the
second hidden layers consist of 15 neurons each. The output layer is composed of 12 joint damage severities.
1500 training patterns have been generated using the Latin hypercube sampling technique based on the assumed
probability distributions of the joint damages shown in Figure 6.

4.3 Joint Damage Estimation

The effectiveness of the joint damage assessment using the NN is examined through 500 testing patterns.
Several levels of the measurement errors in testing patterns are considered as shown in Table 1. The noise levels
included in the training patterns are shown in Table 2. Figure 7 shows that the average value of the mean sizing
error over 500 test patterns is about 0.06 for the measurement error level III with moderate noise, when the NN
has been trained using the noise injection learning (i.e. NIL-B and NIL-C). It indicates that the neural networks
may be reasonably used to assess the damage severities larger than 0.06, but the assessment results for the
damage severities smaller than 0.06 may be unreliable. Figure 8 shows that the mean sizing errors for joints 2, 3,
6,7, 10 and 11 are slightly larger than those for the other joints. It is noteworthy that those are the joints at which
four members meet, while only three members meet at the other joints.

The effect of the measurement errors in the testing data set and the effectiveness of the noise injection learning
are investigated through the comparisons of the detectability tendencies. The results of the DME and the FAE for
various cases are as shown in Figures 9 and 10. It has been observed that the DME reduces very effectively by
employing the noise-injection learning for all measurement error cases. For instance, even for the testing data
with moderate errors(Case II), the estimated DME’s are found to be reasonably small, i.e. DME < 0.1 for the
cases where the damage severity is greater than 0.2. This means that 90 percent of the damaged members can be
correctly detected. The estimated DME’s are almost zero, if the damage severity is greater than 0.3. The results
of the FAE also show that the noise-injection learning is very effective to reduce the effects of the measurement
noise. In general, the number of the false alarming cases increases, if the testing data contain noise with high
level. However, it can be observed that the predicted damaged members whose severities are greater than 0.30
are the truly damaged members in most of the cases, if the noise injection learning with proper levels of noise
has been carried out.

5. Experimental Example

5.1 Experimental Setup

A 2-story frame structure shown in Figure 11 is used in the experimental study. The properties of the beam
and column sections are shown in Table 3. The intact joint fixity factors as well as the damaged joint fixity
factors are identified using the neural networks approach, because the information of the intact joint stiffness is
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inaccessible. The first five natural frequencies and mode shapes are identified at the 8 translational DOF's shown
in Figure 11, and the results are used for estimating the unknown fixity factors. Three types of the joint damage
are artificially induced; i.e. bolt-missing, L-shape connector-missing, and connector thickness reduction as
shown in Figure 12, which represent small, moderate and severe damage cases, respectively.

5. 2 Neural Networks Technique Using Data Perturbation Scheme

A four-layer architecture of the NN has been used, and the input layer consists of 26 neurons, which include
the lower 4 natural frequencies, 6 combinations of 4 natural frequencies (e.g. f,f,,f /> > f.f,) and 8

translational components of the second and forth mode vectors. The combinations of the natural frequencies are
included in the input data to improve the networks performance. The output layer consists of 4 neurons, which
represent the joint fixity factors. The first and third mode vectors are not used, since they are not much related to
the bending behavior of the beam elements. 1000 training patterns have been numerically generated using the
Latin hypercube sampling technique with a uniform probability distribution for the joint damage between 0.0
and 1.0. The noise injection learning’s are carried out for three different noise levels: NIL-A, NIL-B, and NIL-C
as in Table 2. To improve the estimation for three damage cases shown in Table 4, the data perturbation
scheme(Hjelmstad and Shin, 1997) is also incorporated.

5. 3 Joint Damage Estimation

Table 4 shows the estimated joint fixity factors for the intact condition and the estimated joint damage
severities for three damage cases. The results are the average values for 100 cases with perturbed modal data for
each damage case. The standard deviations are given in the parentheses. In damage case I, one of two connectors
is missed at each joint on the first floor. The estimated damage severities for two joints are found to be
reasonably consistent in the range of 0.43~0.49, if the noise injection learning has been carried out: i.e. for Cases
of NIL-B and NIL-C. However, if the technique has not been used, quite different estimates(0.63 and 0.25) are
obtained at two joints with similar damages. It can be also found that the standard deviations of the estimates
decrease considerably, if the noise injection learning is carried out. For Damage Case II with a missing connector
at Joint 1 and two missing bolts at Joint 4, two damaged joints have been duly detected. The damage severity for
the joint with missing bolts is estimated as 0.15, which is less than the value for the joint with a missing
connector. For Damage Case III with a reduced connector thickness, the damage severity of the joint has been
estimated as approximately 0.9, which means that the joint lost 90% of the initial rotational rigidity. The
verification is also performed through the comparisons of the recalculated modal properties using the estimated
damage severities with the measured values as in Table 5. It is noteworthy that the modes have been obtained in
different order compared with the intact case, particularly for Damage Case I as in Table 5. It is because the
damages occur at the joints on the first floor, which have significant affect on the fourth mode. The modal
assurance criterion has been employed to rearrange the modes in the input layer of the neural networks to match
to those of the intact case. The results show that the recalculated frequencies and mode shapes well agree with
the measured values.

6. Conclusions

A method is proposed to estimate the structural joint damages from the modal data using the neural networks
technique. The connection stiffness of a beam-to-column joint in a steel frame structure is represented by the
stiffness of a zero-length rotational spring at the end of a beam element. The joint damage severity is defined by
the reduction ratio of the connection fixity factor. The substructural identification is employed for the local
damage assessment in a large and complex structure. Verification of the present method analysis has been carried
out through a numerical simulation study on a steel frame with 2-bay and 10-story and also through an
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experimental study on a 2-story frame. The results of the joint damage assessment are found to be very reliable
even for the cases with severe noise in the input modal data, if the noise injection learning has been carried out
with a realistic noise level for each input component: for instance, smaller noise for the natural frequencies and
larger noise for the mode shape data. It has been also found that the data perturbation scheme of the modal data
can improve the confidence of the estimates for the cases with a small number of the measurement data set.

Acknowledgement

The authors would like to express their sincere appreciation for the financial supports from the Korea
Earthquake Engineering Research Center(KEERC) and the Korea Science and Engineering Foundation(KOSEF)
to this study.

References

Hjelmstad, Keith D. and Shin, S. (1997), “Damage detection and assessment of structures from static response,”

Journal of Engineering Mechanics, ASCE, 123(6) 568-576

Matsuoka, K. (1992), “Noise injection into inputs in back-propagation leaming”, I[EEE Trans. Systems, Man, and
Cybernetics, 22(3) 436-440

Kim, J.T. and Stubb, N. (1996), “Model Uncertainty Impact and Damage-Detection Accuracy in Plate Girder,”
Journal of Structural Engineering, ASCE, 121(10) 1409-1417

Koh, C.G., See, L.M,, and Balendra, T. (1991), “Estimation of structural parameters in the time domain: a
substructural approach,” Earthquake Engineering and Structural Dynamics, 20, 787-801

Yun, C.B,, Yi, J.H., and Bahng, E.Y.(1998), “Joint Damage Estimation Using Neural Networks,” Proceedings of
Fifth Pacific Structural Steel Conference, 1211-1216

deformed beam axis

2

undeformed beam axis

Figure 1. Kinematics of a deformed beam element with semi-rigid connections
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Figure 2. Architecture of back-propagation neural networks
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Table 1. Artificial Noises for Simulation of Testing Data (% in RMS level)

I IV \Y
ModeNo T T L £l L 7l o | 7l 6l 7 | o
1 0.0 - 0.2 - 03 - 0.5 - 1.0 -
2 0.0 0.0 0.3 5.0 0.5 10.0 1.0 15.0 1.5 20.0
3 0.0 - 0.5 - 1.0 - 1.5 - 2.0 -
4 0.0 - 1.0 - 1.5 - 2.0 - 3.0

Table 2. Noise levels for noise-injection learning (% in RMS level)
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Figure 7. Mean sizing error for different Figure 8. Mean sizing error vs joints
noise levels in test data (Noise level III in test data)
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Table 3. Structural properties of test structure

Cases A I E P
(o) (m*) (Pa) (kg/m’)
Beam 8.69x10” | 5.48x10°
2.10x10" 7850
Column | 4.30x10* | 6.62x10°"°

Note : Mass of each accelerometer is 76.85g.

=

(b) Connector missing
Figure 12. Artificially induced joint damages
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Table 4. Estimated joint damage severities

Joint No. .
Cases 2 3 4
Yo, 1.00 0.94 0.70 0.63
Intact
Ay 0.00 0.00 0.00 0.00
Damage Type Conn missing Conn missing - -
1 NIL-A 0.63(0.32) 0.25(0.32) 0.00(0.05) 0.00(0.20)
o NIL-B 0.43(0.03) 0.49(0.04) 0.00(0.02) 0.00(0.02)
NIL-C 0.48(0.06) 0.45(0.04) 0.00(0.01) 0.00(0.01)
Damage Type Conn missing - - Bolt missing
I NIL-A 0.33(0.22) 0.08(0.02) 0.14(0.18) 0.21(0.33)
o, NIL-B 0.39(0.07) 0.05(0.05) 0.00(0.03) 0.16(0.03)
NIL-C 0.34(0.06) 0.06(0.04) 0.00(0.02) 0.15(0.01)
Damage Type - - Conn thick reduc -
I NIL-A 0.05(0.11) 0.05(0.17) 0.98(0.24) 0.19(0.32)
o, NIL-B 0.07(0.05) 0.09(0.04) 0.88(0.09) 0.05(0.06)
NIL-C 0.06(0.03) 0.06(0.03) 0.86(0.09) 0.06(0.04)
Note: Values in the parentheses are the standard deviations of the estimated damage severities.
Table 5. Comparisons of measured and recalculated natural frequencies
Mode No. 1 2 3 4
Cases f mea f recal | Error f;nea f recal | ErTOr f mea f recal | Error f;nen f recal | EXTOT
(Hz) | (Hz) | (%) | (Hz) | (Hz) | (%) | (He) | (Hz) | (%) | (Hz) | (Hz) | (%)
Intact 4.59 1 4.58 1 0.04 |18.96(18.73| 1.21 |22.26|21.57| 3.09 |25.83|25.22| 2.74
NIL-A 4251071 1891} 0.42 21.371 4.04 17.59| 1.55
I NIL-B 422|417 | 1.18 |18.83]18.52| 1.64 |22.27(21.41] 3.86 {17.32 16.88] 2.54
NIL-C 4.26 | 0.95 18.52| 1.64 21.32| 4.26 17.21 0.63
NIL-A 4.34 | 0.00 17.11; 9.04 21.61] 3.09 21.04] 1.01
11 NIL-B 4.34 | 428 | 1.38 118.81|18.24| 3.03 [22.30(21.77| 2.37 {20.83 20411 2.01
NIL-C 4411 1.61 18.29| 2.76 21.26| 4.66 21.52] 3.31
NIL-A 4.17 | 1.65 14.50| 1.43 20.87| 4.48 24,171 0.57
I NIL-B 424 | 426 | 0.47 114.71|15.25] 3.67 |21.85(21.43] 1.92 [24.31|23.50 3.30
NIL-C 428 | 0.94 15.36| 4.41 21.51| 1.55 23.921 1.60

Note 1. NIL-A, NIL-B, and NIL-C denote the cases of noise injection learning described in Table 2.
2. foea and f,.., are the measured and recalculated natural frequencies.

3.Error= | f,

mea

- .f;eml l /.}rmm X 100
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