Representative Feature Extraction of Objects Using VQ and Its Application To Content-Based Image Retrieval

VQ를 이용한 영상의 객체 특징 추출과 이를 이용한 내용기반 영상 검색

  • 정세환 (고려대학교 산업공학과) ;
  • 유헌우 (고려대학교 산업공학과) ;
  • 장동식 (고려대학교 산업공학과)
  • Published : 1999.10.01

Abstract

내용 기반 영상 검색을 위해 본 연구에서는 Vector Quantization을 이용하여 영상을 구성하는 주요 객체들의 특징 추출 방법을 제안한다. 내용 기반 검색 시스템에서 사용되는 영상의 주요 특징들은 색상, 질감, 형태 및 영상을 구성하고 있는 객체들의 공간적 위치 등이 사용된다. 이러한 특징들 중에서 어떤 특징들을 사용하고 또 어떤 방식으로 결합하느냐에 따라 혹은 영상의 특성을 잘 나타낼 수 있는 주요 특징을 어떻게 추출, 표현하느냐에 따라 검색 성능에 큰 영향을 미친다. 이 중 본 논문에서는 일반적인 색상, 질감 특징 추출방법과 더불어 Vector Quantization 알고리즘을 이용하여 정지 영상을 구성하고 있는 객체들의 대표 색상과 질감 특징을 빠르게 추출하고 이를 내용 기반 검색에 이용함으로써 객체의 위치, 회전 및 크기 변화에 무관한 검색을 가능케 했다. 연구의 실험 결과 VQ를 이용함으로써 대표특징치 추출시간을 줄일 수 있었고 검색시 색상과 질감 특징의 가중치를 각각 0.5, 0.5로 주는 것이 가장 높은 검출율을 보였으며 제안된 방식에 의해 '사람' 영상의 경우 0.9의 검출율을 보였다.

Keywords