Crystal Growth of InP by VGF Method using Auqrtz Ampoule Characterization

  • Park, E.S. (Institute of Ceramic Technology) ;
  • C.H. Jung (Institute of Ceramic Technology) ;
  • J.J. Myung (Institute of Ceramic Technology) ;
  • J.Y. Hong (Institute of Ceramic Technology) ;
  • Kim, M.K. (Institute of Ceramic Technology)
  • 발행 : 1999.06.01

초록

InP, III-V binary compound semiconductor, single crystal was grown by VGF (vertical gradient freeze) method using quartz ampoule and its electrical optical properties were investigated. Phosphorous powders were put in the bottom of quartz ampoule and Indium metal changed in conical quartz crucible hat was attached at the upper side position inside the quartz ampoule. It was vacuous under the pressure of 10-5 Torr and sealed up. In metal in the quartz crucible was melted at 1070$^{\circ}C$ and phophorous sublimated at 450$^{\circ}C$, there after it was diffused in In melt and so InP composition was formed. By cooling the InP composition melt (2$^{\circ}C$∼5$^{\circ}C$/hr of cooling rate) in range of 1070$^{\circ}C$∼900$^{\circ}C$, InP crystal was grown. the grown InP single crystals were investigated by X-ray analysis and polarized optical microscopy. Electrical properties of them were measured by Van der Pauw method. At the cooling rate of 2$^{\circ}C$/hr, its direction was (111), quality of the ingot ws better upper side of the ingot than lower. It was found that the InP crystals were n-type semiconductor and the carrier concentration, electron mobility and relative resistivity were 1015∼1016/㎤, 2x103∼3x104$\textrm{cm}^2$/Vsec and 2x10-1∼2x10-3Ωcm in the range of 150K∼300K, respectively.

키워드