Limitation of FDM Weighted Average Grids in Frequency Domain
F35 dA FVAE AR AR5 SAA
FAY - AL RE!

Introduction

The means of reducing central processing unit (CPU) time and direct-access memory requirements
in finite-difference methods are to use high order finite-difference approximations to spatial and
temporal derivatives (Dablain, 1986) and to use weighted average method which was developed by
Jo, et al. (1996). This method is to weight finite difference equation from conventional 5 points and
the difference equation from transformed coordinate to 0, 45°. With this method the grid point per
minimum wave length reduced to 13, however conventional 5 points method need more than 9 grid
points. Shin & Sohn (1995) extended this 9 points weighted average method to 25 points which
was transformed coordinate to 0, 45 in 5 points and to 0, 22.5, 45, 62.5 in 25 points. They reduced
the grid points per minimum wave length to 3 and show the good accuracy with saving computing
time and memory. According to this weighted average methods we can deduce that if we get more
finite difference stars we could reduce the grid per minimum wave length keeping accuracy and
resolution. Can we reduce the grids to 2 ? In this study we worked 81, 121 and 169 finite difference
stars weighted average method and dispersion analysis. And we will show that weighted average

methods are optimum between the accuracy and saving computing time and memory.
FDM formulation using weighted average method
In Cartesian coordinate system, the scalar wave equation in frequency domain can be written
. ,
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where u is the pressure of wave field, w is angular frequency and v is velocity of medium. The
conventional finite difference expression of equation (1) by the explicit second-order difference
scheme can be written
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where u; ; is compressional field at z; = 2o + (i — 1)Az, z; = 20 + (j — 1)Az, Az, Az is grid
distance and w is angular frequency. ‘The new Laplacian term by weighted average method is

N
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where 7}, is coefficients of difference stars, N is number of transfonﬁéd coordinate and V2 is Laplace
term according to each weighted average method. The mass accelation term of equation (1) can
be rewritten by u = yu* + (1 — ¥)[u]. The new mass accelation term by weighted average method
is
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where a; are weighted average coefficients for the mass term. Substitution equation(3) and
equation(4) into equation(??) yields

ZrkViu-f-Zaku =0 (5)
k=1 k=1

And let’s substitute the plane harmonic wave u = e~ (¥=2+K=2) p = ksin@ and &, = kcosé into
equation (5), where 6 is the propagation angle to the normal, then we get the following equation,
w? B
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where G = A/X, which is number of grid per wavelength and v is velocity of the medium (Jang,
1999). Since phase velocity V,, is % and group velocity Vg, is (;_(Z , normalized phase velocity for
weighted average method is
Vo = 1 /=B (7
Vo 2nGYV A
and the normalizes group velocity V,, for weighted average method is
Vor _ 1 Vo AB' - BA' (8)
Vo 471G Vp A?
where A’ and B’ are the partial derivative of A and B to the wave number and V is velocity of
the medium.

Conclusion

We tried to find out optimum weighted average method for solution of scalar wave equation in
frequency domain and conclusions are followed:

¢ New weighted average methods, 81, 121 and 169 points difference stars, were studied. The
numerical errors in phase velocity less than 1 % for accuracy solution in 81 points could
be archived 2.5 grid points per wavelength and in 121 points could be archived 2.3 points.

However, in 169 points there was no solution because of oscillation of dispersion curves in
group velocities.

e According to dispersion analysis for determination of grid points per wavelength, I have
shown that the more rotated finite difference operators, the less grid points. However, the

more rotated finite difference operator are needed the more complex difference equation
terms.
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Figure 1: Normalized phase and group velocity curves for finite-difference solution of 2D scalar
wave equation in frequency domain. left : phase velocity curves of 81, 121 and 169 points, right:
group velocity curves of 81, 121 and 169 points
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Figure 2: Relationship between number of finite difference stars and grid points per wavelength
show that the more finite difference star have the less grid points per wavelength.
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