An Extension Scheme of the Berkeley Socket Interface for

Multipeer Multimedia Communications

Yong-Woon Kim

Protocol Engineering Center, ETRI

E-mail : gkim@pec.etri.re.kr

Abstract

This paper proposes an extension scheme of the well-known Berkeley Socket Interface for
supporting QoS-provided multipeer multimedia communications. The current BSD Socket Interface
has been TCP/IP-centric historically and the protocol suite was developed for the peer-to-peer
best effort data communications. In order to support multiparty multimedia applications, such
key functions as group management, QoS control, and reliable multicast transport should be
exploited in the current simple unicast communication architecture and the well-known interface
should be extended to cover the functions. This paper proposes a few new API functions and

some changes in the current APls.

l. Introduction

Interactive/ distributed multimedia applications
require a reliable concurrent multicast service
based on transmitting user data from a single
or multiple sources to all members of a
multicast group.[1] The concurrent transmission
of data to multiple recipients has been
receiving increased attention since the late
1980s.{2] In particular, many applications in the
Internet can benefit from multicasting their data
to peer applications.[34] For many newer
Internet protocol developments, multicasting is
rapidly becoming the general case of datagram
transmission, with unicasting just a special
case.[5,6]

Current IP multicast technologies are based
on RFC 1112 which has been updated by RFC
2236. The IGMP is used by IP hosts to report
their multicast group memberships to any
immediately-neighboring ~ multicast routers.
Multicast routers use IGMP to learn which
groups have members on each of their attached
physical networks. A multicast router keeps a
list of multicast group memberships for each
attached network, and a timer for each
membership. "Multicast group memberships”
means the presence of at least one member of
a multicast group on a given attached network,
not a list of all of the members.[7]

IP multicast allows sources to send to a
multicast group without being a receiver of
that group. However, for many conferencing
purposes it is useful to know who is listening
to the conference, and whether the media flows
are reaching receivers properly. Accurately
performing both these tasks restricts the scaling
of the conference. IP multicast means that
no-one knows the precise membership of a
conference at a specific time, and this
information cannot be discovered, as to try to
do so would cause an implosion of messages,
many of which would be lost. Instead, RTCP
gives approximate membership information
through periodic multicast of session messages
which, in addition to information about the
recipient.[8] So it has been said that the MBone
is loosely coordinated for membership.

In networks that are able to carry a range of
different types of traffic from different
applications, this contract is usually expressed
in terms of a set of performance measures
commonly known as Quality of Service
parameters.[9] An integrated-services network is
a network designed to carry various types of
trafficc, and to offer various services in an
attempt to satisfy the different requirements of
those types. Different types of traffic have
different QoS requirements; for example, an
interactive voice packet is to be delivered with
a relatively short delay and a small delay

variation; a file data needs reliable transmission
and a reasonable transfer time; and so on.
Thus, an integrated-services network must be
governed by protocols that are sensitive to the
QoS requirements of the various types of traffic
and try to satisfy each one of them as much as
possible.[10] The Internet has no basic, widely
implemented way of expressing transmission
rate and delay parameters, qualitatively or
quantitatively.[9]

Up to now, UNIX applications that were to
exploit the advantages of multicasting only had
UDP available as a transport protocol.[11] UDP
essentially relays the unreliable datagram
semantics of IP to the transport level, only
adding error detection (discard on error) and
an additional layer of multiplexing. On top of
UDP, specialized protocols such as RTP/RTCP
have been built that converted these semantics
into those actually needed by the application.
[12,13]

For those requirements, a ubiquitous transport
protocol is not enough: to enable the
emergence of portable multicast and QoS based
applications, the multicast transport service
interface must be as widely available. For UDP
and TCP, the Berkeley socket interface is the
most widely available APL. The current socket
interface that was developed initially and has
been used in the BSD UNIX operating system
and its derivations. It supports only the reliable
unicast transmission and IP multicast capability
which contains join of a network multicast
group and transmission of a data multicast. It
cannot provide QoS and transport group
functions. Section II describes new transport
services specified in ECTS in order to support
the requirements. Section III explains extensions
to the socket API for ECTP qos-based multicast
transport protocol. Then conclusions are offered
in section IV.

II. Enhanced Transport Services

The existing transport services based on the
OSI reference model or the TCP/IP protocol
stack are designed for peer-to-peer unicast
communications. So their protocol functions are
very simple and poor. ISO/IEC JTC1/SC6 and
ITU-T SG7 have worked for a common project
of developing new standards for the multipeer
multimedia communications of which key
service functions are QoS provision, multicast

transmission, and group management.

ECTS (Enhanced Communications Transport
Service[14]) provides for those services and
defines a wide range of services ranging from
unreliable unicast with best-effort QoS to
reliable multicast with guaranteed QoS. In this
way, ECTS is meant to provide for a universal
and uniform service interface between transport
protocols and applications of the present and
the future information age, especially for those
applications requiring versatile and powerful
multimedia group communication capabilities.
ECTP is a protocol to provide the transport
services as follows defined in ECTS.

® Create: can be used by the connection
owner to establish a homogeneous TC
(Transport Connection), provided the

enrolled TS-users exist and are known to
the TS-provider. It is assumed that there
exists one and only one TC-owner who
possesses the right to create and terminate a
transport connection of a given enrolled
group.

® Invite: can be used by the owner to invite
the TS-users to collectively establishing a
heterogeneous cormnection, provided the
enrolled TS-users exist and are known to
the TS-provider. A heterogeneous TC is
established by individual establishment of
multiple 1xN simplex channels, each by
every focal TS-user through join primitives.

® Data Transfer: provides for two types of
transfer of TSDUs from a sending TS-user
to the other receiving TS-user(s). In one
type, data transfer takes place over a
successfully established TC using T-DATA
primitives. In the other type, it takes place
at any phase of a TC using T-UNITDATA
primitives; it may take place even when no
TC is available between the sending and the
receiving TS-users.

® Pause: provides for the TS-provider to
indicate with the T-PAUSE indication to the
active group TS-user(s) that the TC has
entered the state where the data transfer is
not allowed. The reason parameter within
the primitive should deliver the reason, e.g,,
violation of the QoS or the AGIL

® Resume: is used to resume the data transfer
recovering from the temporarily violated
TC-characteristics. After the receipt of the
RESUME indication, the active group
TS-user may restart issuing T-DATA request

—501—

primitives or receiving T-DATA indication
ones.

® Report: is used to notify the change or
selection of TC-characteristics to the active
TS-users during data transfer or in TC
establishments.

® Join: can be used by the focal TS-user to
establish a heterogeneous TC, provided the
enrolled TS-users exist and are known to
the TS-provider, and by a TS-user to join
an already existing homogeneous TC as a
send and/or receive TS-user or a
heterogeneous TC as a receive-only user.

® Leave:
the TC.

® Terminate: is used to terminate a TC. The
termination may be initiated by the
TC-owner or the TS-provider due to fatal
failure of some TC-characteristics. It is
permitted at any time regardless of the state
of the TC.

® Token Manage: can be used by the
TC-owner and other sending TS-users to
pass around the token(s) for the right to
transmit data.

® Ownership Transfer: can be used by the
TC-owner and TS-users to pass the TC
ownership.

is used to remove a TS-user from

Corresponding transport service primitives
and their parameters can be summarized in
Table 1.

ll. AP! Extensions

Group communication presents by necessity a
more complex service interface than point-to-
point communication. It is important that the
ECTP API does not further confuse application
programmers, that is, the interface should be
compatible both syntactically and semantically
to well-known existing interfaces as far as
possible and be the same for both kernel driver
and user-mode daemon implementation of
ECTP.

The BSD socket interface is the widely
accepted UNIX interface for interprocess
communication today and the majority of
application programmers are expected to be
comfortable with it. Therefore it has been
chosen as the basis for the ECTP APL

ECTP[15] has been designed for providing
the enhanced transport services. A transport
service user calls an API function that is a

Service Primitives Parameters
T-CREATE (Called address, Calling address,
request TC~characteristics, TS-user data
T-CREATE |[Called address, Calling address,
create indication _{TC-characteristics, TS-user data
T-CREATE |[Responding address,
response | TC-characteristics, TS-user data
T-CREATE |Responding address,
confirm TC-characteristics, TS-user data
T-INVITE |Called address, Calling address,
invite request TC-characteristics, TS-user data
T-INVITE [Called address, Calling address,
indication | TC-characteristics, TS-user data
T-DATA
request TS-user data
T-DATA [Calling address, Status, TS-user
data indication _|data
transfer | T-UNITDATA [Called address, Calling address,
request TC-characteristics, TS-user data
Called address, Calling address,
T-gﬁicn:t)ig: A '(Ii‘C-characterisﬁcs, Status, TS-user
ata
T-PAUSE
pause indication |Reason
T-RESUME
resume indication Reason
report E‘;E;ggg Reason
T-JOIN Called address, Calling address,
request TC-characteristics, TS-user data
T-JOIN Called address, Calling address,
‘oin indication |TC-characteristics, TS-user data
) T-JOIN Responding address,
response |TC-characteristics, TS-user data
T-JOIN Responding address,
confirm | TC-characteristics, TS-user data
T-LEAVE |Called address, Calling address,
Jeave request TS-user data
&;E:h‘{)f\ Called address, Reason
T;_g‘]ilzx TS-user data
(L4
l};;};gﬁ‘:n Rereason, TS-usdata
T-OWNER |Called address, Calling address,
request user data
T-OWNER |Called address, Calling address,
ownershi indication |TS-user data
PI"T.OWNER |Responding address, TS-user
response |data
T-OWNER |Responding address, TS-user
confirm |data
T-GIVE Called address, Calling address,
request TS-user data
T-GIVE |Called address, Calling address,
token indication |TS-user data
give T-GIVE |Responding address, TS-user
response |data
T-GIVE Responding address, TS-user
confirm _ [data
T-GET Called address, Calling address,
request TS-user data
T-GET Called address, Calling address,
token indication [TS-user data
get T-GET [Responding address, TS-user
response |data
T-GIVE |Responding address, TS-user
confirm data

Table 1 - Transport Services and Their Primitives

means to interact with the transport service
provider through an access point called port.

The service provider is a collection of every
participating transport entity which may
exchange control packets for cooperation. API
functions are summarized below. In the
function names, "m" means to support the
reliable multicast transport based on QoS.

Some of the functions such as msocket,
mlisten, mrecv, and so on, have been extended
in their semantic definitions and parameters
and the other ones such as mrespond,
mtokenget, mownertr, and so on have been
specified newly.

(1) msocket()

It creates a new unnamed clientt/server or
multipeer socket within the ECTP domain. To
perform ECTP network I/O, the first thing a
process must do is calls the msocket function,
specifying the type of communication protocol
desired (ECTP using IPv4, ECTP using [Pv6,
ECTP using OSI protocols, etc.).

int msocket (int family, int type, int
protocol, int role);
Returns: non-negative descriptor if OK, or -1

on error

- family: specifies the protocol family such as
AF_INET, AF_INET6, AF_ISO, etc.;

- type: specifies the type of socket such as
SOCK_STREAM, SOCK_DGRAM, or SOCK_TSDU.;

- protocol: is set to 0 except for raw sockets;
and

- role: specifies the role of this calling initiator
such as TC_OWNER, TC_USER, TC_CLIENT, or
TC_SERVER.

(2) mbind()

With the Internet protocols the protocol
address is the combination of either a 32-bit
IPv4 address or a 128-bit IPv6 address, along
with a 16-bit ECTP port number. It associates a
pair of local and group addresses along with
each port to a socket.

int mbind(int msockfd, const struct
sockaddr *myaddr, socklen_ t myaddrien,
const struct sockaddr *erpaddr,
socklen_t grpaddrlen) ;

Returns : 0 if OK, or -1 on error.

- msockfd: is a socket descriptor that was

returned by the msocket function;

- myaddr: is a pointer to a protocol-specific
address to bind a local address to the above
socket;

- myaddrlen: is the size of the above address
structure;

- grpaddr: is a pointer to a protocol-specific

address to bind a target group address to
the socket; and

- grpaddrien: is the size of the group address
structure.

In the ECTP multipeer model, the two ports
for the local and group addresses must be
identical each other for distinguishing multiple
cornection end points. A process can mbind a
specific IP address or network address and a
target group network address to its socket. The
source and group addresses must belong to an
interface on the host. For an ECTP user, these
assign the source IP address and the group IP
address that will be used for IP datagrams sent
on the socket and the group address restricts
the socket to receive an incoming connection
destined only to that IP addresses.

Otherwise, in the client/server model, servers
bind their well-known port when they start.
Operations are the same as in the existing
client/server model.

(3) mconnect()

It initiates a connection creation to a specified
foreign address and contains the initiator's QoS
proposal. It may be mapped to a T-CREATE
request and its return to either T- CREATE
confirm, if OK, or T-TERMINATE indication, if
failed.

Or it initiates a late join process. It may
correspond to a T-JOIN request and its return
to either T-JOIN confirm, if OK, or T-LEAVE
indication, if failed.

int mconnect (int msockfd, const struct
sockaddr *rmtaddr, socklen_t
rmtaddrlen) ;

Returns: a code number specifying what kind
of protocol control information is generated to
user if OK, or -1 on error.

- rmtaddr: is a pointer to a protocol-specific
address to which a connection initiator opens

a connection or a late joining user asks his

join request. Thus this address may be a

group address or a peer address; and
- rmtaddrlen: is the size of the above remote

address structure.

(4) mlisten()

It converts an unconnected socket into a
passive socket, indicating that the kernel should
accept an incoming connection request, and
waits for and accept a single connection. Its
return message corresponds to a T-CREATE

—-503—

indication.

The semantics of the function is somewhat
different in the multipeer model and the
client/server model.

int mlisten (int msockfd, int backlog) ;

Returns: 0 if OK, or -1 on error.

- backlog: specifies the maximum number of
connections or data channels that the kernel
should queue for this socket.

When a multipeer socket is created by the
msocket function, it is assumed to be an active
socket, that is, the owner socket that will issue
an mconnect. The mlisten function converts an

unconnected socket into a passive socket,
indicating that the kernel should accept
incoming channel requests directed to this

socket in the heterogeneous connection type.
The second argument, backlog, to this function
specifies the maximum number of channels that
the kernel should queue for this multipeer
socket. But it should be 1 in the homogeneous
connection type because there should be only
one single connection in a multipeer group.
This function is normally called after both the
msocket and mbind functions and must be
called before calling the mrespond function.

(5) maccept()

It returns a next completed connection from
the front of the completed connection queue
and is called by an ECTP server. This function
can be used only for the existing peer-to-peer
client/server model. If the connection queue is
empty, the process is put to sleep.

int maccept (int msockfd, struct sockaddr
*cliaddr, socklen_t *cliaddrien) ;
Returns: non-negative descriptor if OK, or -1

on error.

- cliaddr: returns the protocol address of the
connected peer process (the client); and

- cliaddrlen: is a pointer to the size of the
socket address structure pointed by cliaddr.

If maccept is successful, its return value is a
brand new descriptor that was automatically
created by the kernel.

(6) mrespond()

It responds in order to take part in a
creating connection, ie., T-CREATE response,
accept the ownership transferred from the
owner, i.e., T-OWNER response, accept a token

given from the owner, ie, T-GIVE response of
a TS-user, or receive a coming-back token, ie,
T-GIVE response of the owner, or does to a
join request initiated by a late joining TS-user,
ie, T-JOIN response of the owmer, to a token
retrieval of the owner, ie, T-GET response of a
TS-user, or to a token request initiated by a
TS-user, i.e.,, T-GET response of the owner.

This function is used by an ECTP user
including the owner. It provides multiple
protocol functions as above. The returning flags
are indicated locally by a transport entity.
Other indication flags are retumed by the
mrecv function after the exchanges.

int mrespond (int msockfd, const struct
sockaddr *rmtaddr, socklen t rmtaddrlen,
int flags);
Returns: zero if OK, or -1 on error.
- rmtaddr: is a pointer to a protocol-specific
address to which a connection initiator opens
a connection or a late joining user asks his
join request. Thus this address may be a
group address or a peer address; and
- flags: specifies what kind of protocol control
information is generated to the kernel.

(7) msend()

It sends data from a single buffer into a
connected socket. It may correspond to a
T-DATA request.

ssize t msend (int msockfd, const void
fuserdata, size_t nbytes, int *flags);

'
—

Returns: number of bytes written if OK, or
on error.
- userdata: is a pointer to buffer to write from;
and
- nbytes: is the number of bytes to write.

(8) msendto()

It sends a unit of data to a specified address.
It may correspond to a T-UNITDATA request.
The "to" argument for "msendto” is a socket
address structure containing the protocol
address of where the data is to be sent.

ssize_t msendto (int msockfd, const void
*userdata, size_t nbytes, int *flags,
const struct sockaddr *foaddr,
socklen_t toaddrlen, tc_chars *chars);
Returns: number of bytes written if OK, or -1
on error.
- toaddr. is a pointer to a protocol-specific
address to which user data is sent. It may
be a group address or a peer address;

toaddrlen: is the size of the above toaddr
address structure; and

- chars: is a pointer to a TC characteristics
structure containing the AGI and QoS
parameters. '

(9) mownertr()

The TC-owner only can use this function
when he wants to transfer the ownership to a
specified user or a group of members for
contention. It can be mapped to a T-OWNER
request.

int mownertr (int msockfd, const struct
sockaddr *myaddr, socklen t myaddrlen,
const struct sockaddr *rmfaddr,
socklen_t rmtaddrien) ;
Returns: zero if OK, or -1 on error.
- myaddr: is a pointer to a protocol-specific
address, specifying the TC-owner; and
- rmtaddr. is a pointer to a protocol-specific
address to which the ownership transfer
packet is transmitted in unicast or multicast.

(10) mtokenget()

The TC-owner or a TS-user calls this
mtokenget function when the owner wants to
withdraw a token from a TS-user or the
TS-user wants to get the floor. The former case
is called the token retrieval, i.e., the owner’s
T-GET request, and the latter one is called the
token request, i.e., the TS-user’'s T-GET request.

int mtokenget (int msockfd, const struct
sockaddr *myaddr, socklen_t myaddrlen,
const struct sockaddr *rmtaddr,
socklen_t rmtaddrlen) ;

Returns: zero if OK, or -1 on error.

(11) mtokengive()

The TC-owner or a TS-user calls this
mtokengive function when the owner allocates
a token to a TS-user or a TS-user wants to
return back the floor to the owner. The former
case is called the token allocation, i.e., the
owner's T-GIVE request and the latter one is
called the token return, ie, a TS-user's T-GIVE
request.

int mtokengive (int msockfd, const
struct sockaddr *myaddr, socklen_t
myaddrilen, const struct sockaddr
*rmtaddr, socklen_t rmtaddrien) ;

Returns: zero if OK, or -1 on error.

(12) mrecv()

This function is used for a lot of actions by
an ECTP user including the owner. It provides
multiple protocol functions as below and
delivers some information to a TS-user. It can
be mapped appropriately to a T-DATA ind.
T-REPORT ind., T-PAUSE ind., T-RESUME ind.,
T-LEAVE ind, T-JOIN ind., T-OWNER ind.,
T-OWNER con.,, T-GIVE ind.,, T-GIVE con.,
T-GET ind.,, T-GET con., or T-TERMINATE ind..

ssize t mrecv (int msockfd, void
fuserdata, size t nbytes, int *flags,
struct sockaddr *fromaddr,
socklen_t *fromaddrien) ;

Returns: number of bytes read if OK, or -1
on error.

- userdata: is a pointer to buffer to read into;

- nbytes: is the number of bytes to read into;
and

- fromaddr: is a pointer to a protocol-specific
address to specify the sender.

When a TS-user receives user data from the
buffer, he must evaluate fromaddr to distinguish
senders and deliver each user data into a
buffer for a specific sender. Thus an application
may handle multiple receiving buffers for every
concurrent sender.

(13) mrecvfrom()

It delivers a unit of data and address of
sender, corresponding to a T-UNITDATA ind.
The function fills in the socket address
structure pointed to by fromaddr with the
protocol address of who sent the datagram.
The number of bytes stored in this socket
address structure is also returned to the caller
in the integer pointed to by fromaddrlen.

ssize t mrecvfrom (int msockfd, void

fuserdata, size_t nbytes, int *flags,

struct sockaddr *fromaddr,
socklen_t *fromaddrlen, tc_chars
*chars) ;
Returns: number of bytes read if OK, or -1
on error.
- userdata: is a pointer to buffer to read into;
- fromaddr: is a pointer to a protocol-specific
address to specify the sender;
- fromaddrien: is the size of the above fromaddr
address structure; and
- chars: is a pointer to a TC characteristics
structure containing the AGI and QoS parts.

When a TS-user receives user data from the
buffer, he must evaluate fromaddr to distinguish
senders and deliver each user data into a
buffer for a specific sender. Thus an application

—505—

may handle multiple receiving buffers for every
concurrent sender.

(14) mclose()

It terminates an existing connection and
releases its associated socket. It may correspond
to a T-TERMINATE request, if the initiator is
the owner, or a T-LEAVE request, if it is a
non-owner TS-user. The default action with an
ECTP socket is to mark the socket as closed
and return to the process immediately. The
socket descriptor is no longer usable by the
process: it cannot be used as an argument to
msend or mrecv.

int mclose (int msockfd) ;

Returns: 0 if OK, or -1 on error.

V. Conclusion

Making multicasting accessible to application
developers would be greatly facilitated by
ubiquitous deployment of a suitable reliable
multicast transport protocol. This paper
proposes to use ECTP as this protocol, as it is
scalable, reasonably efficient for most
applications, reliable, and provides globally
ordered delivery of messages, thus simplifying
application development.

Modified and extended APl functions which
has been designed to use the ECTP have been
described in this paper. Since their structures
are similar to those of the existing socket API,
developers will be comfortable with the
proposed functions.

ECTP is being implemented on FreeBSD as a
user-mode daemon now, but will be done as a
kernel module at the next version. These
results will be contributed to ISO/IEC
JTC1/SC6 WG7 ECTP project having a goal of
designing an enhanced transport protocol.

References

[1] Brian Neil Levine, David B. Lavo and J]].
Garcia- Luna-Aceves, "The Case For Reliable
Concurrent Multicasting Using Shared Ack
Trees", Proc. ACM Multimedia 1996 Boston,
MA, November 18--22, 1996. http://www.
cse.ucsc.edu/research/ccrg/ publications/brian.
mm96.ps.gz

[2]S. Deering, "Host Extensions for IP

Multicasting”, IETF RFC 1112, August 1989

[3] Kurt Lidl, Josh Osborne, and Joseph
Malcolm, '"Drinking From the Firehose:
Multicast Usenet News", in Proc. of the 1994
Winter USENIX, pp. 33-45, January 1994

[4] Stephen Casner and Stephen Deering, "First
IETF Internet Audiocast', ACM Computer
Communications Review 22(3), July 1992

{5]Lixia Zhang, Stephen Deering, Deborah
Estrin, Scott Shenker, and Daniel Zappala,
"RSVP: A New Resource ReSerVation
Protocol", IEEE Network 7(5):8-18, September
1993

[6] Frank Kastenholz and Craig Partridge,

"Technical Criteria for Choosing IP: The
Next Gerneration (IPng)‘, Internet Draft,
March 1994

[71Sridhar Pingali, Don Towsley, and James F.
Kurose, "A comparison of sender-initiated
and receiver-initiated reliable = multicast
protocols”, Proceedings of ACM
SIGMETRICS 94, Vol. 14, pp. 221-230, 1994

[8]Sally Floyd, Van Jacobson, Ching-Gung Liu,
Steven McCanne, and Lixia Zhang "A
Reliable Multicast Framework for Light-
weight Sessions and Application Level
Framing", IEEE/ACM Transactions on
Networking, Nov. 1996

[9]Jon Crowcroft, lan Wakeman, Mark Handley

and Stuart Clayman, "Internetworking
Multimedia", UCL Press, January 1997
[10] Demenico Ferrari, "Multimedia network

protocols: where are we?", Technical Report
of the Tenet Group

[11]]. Postel, "User Datagram Protocol”, IETF
RFC 768, August 1980

[12]JH. Schulzrinne and S. Casner, "RTP: A
Transport Protocol for Real-Time
Applications"”, IETF RFC 1889

[13} Walid Dabbous and Blaise Kiss, "A reliable
multicast protocol for a white board
application”, INRIA Centre de Sophia
Antipolis, November 1993

[14]1SO/IEC JTC1/SC6 ECTS FDIS 13252, Sep.
1998

[15] ISO/IEC JTC1/SC6 ECTP CD 14476,
1998

Feb.

—506—

