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In Synthetic Aperture Radar(SAR) imaging, the echoed data are collected by
moving radar’s position with respect to the target area, and this operation actually gives
effect of synthesizing aperture size, which in turn gives better cross range resolution of
reconstructed target scene. Among several inversion scheme for SAR imaging, we uses
an inversion scheme which uses no approximation in wave propagation analysis, and try
to verify whether the collected data with synthesized aperture actually gives the same
support as that with physical aperture in the same size. To do this, we make a signal
subspace comparison of two imaging models with physical and synthesized arrays,
respectively. Theoretical comparison and numerical analysis using Gram-Schmidt
procedures had been performed. The results showed that the synthesized array data
fully span the physical array data with the same system geometry and strongly support
the proposed inversion scheme valuable in high resolution radar imaging.

1 Introduction

Unlike a traditional radar system, the new technology using Synthetic Aperture
Radar(SAR) imaging system is capable of imaging a target as well as ranging and
detection of the target. This imaging radar system employs synthesizing aperture
techniques instead of using huge size physical antennas by moving radar(SAR) or
target(Inverse SAR) in echo data collection. Such echo imaging techniques applies to
raw data processing of various remote sensing problems such as geophysical exploration,
environmental monitoring, and reconnaissance of military purpose[1](2][3].

In this paper, we make a comparison of two imaging models which are called
physical and synthesized arrays in echo imaging. Both of them have the same system
geometry except that one uses physical fixed array as an aperture while the other
synthesizes the same size of aperture through the Doppler processing. The inversion
based on each model is a computationally manageable method that incorporates the
radiation pattern of each element on the array at the transmit and receive modes. For
this comparison, we use the inversion equation of synthetic aperture radar imaging[4]
and that of physical aperture discussed detail in this paper.

This study indicates that a physical array and its synthesized counterpart
possess the same resolution despite of the fact that the synthesized array’s signal
subspace is a subset of much larger signal subspace for the physical array. This study
also shows that the data from physical array contains redundant information as
compared with the synthesized counterpart.

II. System model and inversion with physical and synthesized array data

We consider the system model and the inversion for a monostatic and
ground-plane physical array with a source of spherical radiation pattern(See Fig. 1). For
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SAR, a monostatic radar is mounted on a vehicle such as an aircraft or satellite moving
along certain prescribed pat, and transmit source and receive echo signal while it is
movingl4]. Unlike the synthesized array, a physical array is a group of Single Element
Transducers (SETs) fixed on the line and all SETs record returning signal from the
object area at the same time for the one source of SETs. The system geometry is the
same as that of the SAR system except that a group of SETs are fixed along the line

x=X, in the (x,y) plane instead of moving a SET along the line. This physical
array makes a transmission at (X ,,Y,;+ «) and its corresponding reception at all
SETs (X,;,Y+v) for u e [-L,+L], ve [—L,+L] on the (x,y) plane. The

(x,y) coordinate represent range and cross range, respectively. The wave traveling in
the medium surrounding the target has temporal frequency of @ and the source signal
has certain bandwidth centered at carrier frequency.

Since the radar’s radiation pattern at far field is spherical, the phase delays by
a point scatterer at (x, y) for the transmit-mode and receive-mode are

(X =02+ (Y, +u—y)?® and B (X, —x)?+(Y,+v—13)? respectively, when we
assume we have physical array antenna.

Thus, the total recorded echoed signal from the target area at physical array is

P, v,w)=ff Ax, )+ explill (X, =0+ (Y +u—)?%
expl ik (X, =27+ (Y,+v—*dx dy (1)

where Ax,y) is the object’s reflectivity function. For notational simplicity, we consider
the case of Y ,=0, ie, broad side case.

The spherical wave with wavenumber £, ie., expliil (X L= 2+ (u— )%,
has spectral decomposition of the SET's radiation pattern as follows:

f°° expli(V k2 — kA X — 20+ k (u— )]

dk, (2)
— \/kz——ki .

where k, represents the Fourier transform pair of w. Similarly for v, we have

© exp[iV k2= XX | — 0+ k (v— V)]

| dk, (3)
—e VE kY :

where £k, represents the Fourier transform pair of wv.

By substituting eq. (2) and eq. (3) in eq. (1) and after some rearrangement
(amplitude suppressed), one obtains

Huvo)= [ de, [ de, FVE= AR =K kytk)

expli (V B2 — B24+V B2 — DX |] explj(k u+ k,0)]. | (4)

Note that F(*,*) is Fourier counterpart of Ax,vy). Taking the spatial Fourier
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transform of both sides of eq. (4) with respect to « and v yields,

Pl kyo)=F\ k2= k2+V B2 — k%, kot k) expli(V B2= 24V EE—EDX ). 5)
Finally, from eq. (5) we can write the following inversion equation:

F(k19ky)=eXp[_]kxX1] P(ku,kv,w)’ (6)
where k,=\ k*—ki+V k2 —k: and k=k, +k,.

In the same geometry, the phase delay for Synthetic Aperture Radar is
2B (X 1— 22+ (Y, +u—)? and total recorded data from the point target located at
(x, y) is represented as

s a)= [ [ Rxn) - exols 26 (X, =2+ (Y1t u—) ldedy. (D

The inversion equation is

F(k,, k,)=expl—jk,X,] S(k, o), (8)

where k,=V4k’—k2 and k=*k,.

From eq. (6) and (8), the coverage of the temporal and spatial frequency domain data in
the spatial frequency domain of target, i.e, F(k,, k,), is depicted as Fig. 2 and Fig. 3.

HI. Signal subspace comparison

A. Theoretical Study

Recall that s(u,w) is the recorded data at the synthesized aperture. If there are
N unique measurements made for a synthesized array, the number of unique data for a

NN+1)
2

physical array is . Moreover, the signal subspace of a synthesized array is a

subset of the signal subspace for a physical array of the same size. Despite this fact,
the following clues raise the question of whether a physical array data contain
redundant information or not.

® Fact 1 : Fig. (2) and Fig. (3) based on the facts in eq. (6) and eq. (8), indicate that
the spatial frequency coverage obtained via a physical array and a synthesized array of
the same size are approximately identical.

® Fact 2 : From the results in Ref. [4], it can be shown that the cross-range
resolution in the broadside case for both the physical and synthesized arrays is
X4

Ay=—4—i', where A= —Zkl is the wavelength of the impinging field and L is half of

the aperture size.

® Fact 3 . The empirical studies show that the physical arrays yield images with
cross-range resolutions that are slightly inferior to those of synthesized arrays of the
same size. This can be attributed to the fact that the two-dimensional discrete Fourier

transforms performed in the (u,v) domain for a physical array produces more
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numerical errors than the one-dimensional discrete Fourier transform in # domain for
a synthesized array.

In addition to the above Fact 1, 2 and 3, we can prove that physical array data
for a point scatterer can be represented via a linear combination of the synthetic
aperture data for the point scatterer. If we consider only one point target in the object
region, that is, Ax,¥)=d&x—x,,¥—¥,),then the recorded signals using physical and
synthesized arrays are

pu, v, @)= explik] (X, —x0)2+ (u—y0)?] explid (X, —x0)>+ (v—,)°] 9
s(u, w) = exp[]Zk\/ (X,—x)%+(u—yy?. (10)

By taking the Fourier transform of eq. (9) and eq.(10) in both (u, v) domain and
spatially shift this data into object region by multiplying exp{—sk,X;] with an

approximation of X ;> x; we then obtain

Pk, k,,0) = A(k, k,) exp[—7 (k,+k,) v, (11
S(k,,w) =~ B(k,) exp[—j k, y¢l, (12)
1 1

h Alk k)= d B(k,= .
where Alkw k)= m g, M BRI T
Note that either A(k,, k,) or B(k,) is an amplitude function.

From eq. (11) and eq. (12), we can represent Xk,,k,, @) in terms of
S(k,,w) for a fixed k,. That is

Pk, k, 0)=Clk,k)S(k, o), (13)
_ Alku, k)exp(—jkwy,)
where C(k us kv) = B(k u) .

The total frequency coverage of the echoed data in (k,,%,) domain, consists

of frequency coverage from each point target. In other words, the signal subspace of the
Fourier domain data by one point target is a subset of the one by all point targets in
the object region. Therefore, comparison of signal subspaces of physical and synthesized
array data from one point target, gives the same conclusion in dealing with the total
echoed signal subspace from the object area to be imaged. We also proved this
relationship numerically next.

B. Numerical Study Using Gram-Schmidt Procedures
If an arbitrary vector ¢ is in a signal subspace completely spanned by a set of

orthonormal basis vectors, 7_, , wherei=1, ..M, then e can be completely

represented by a linear combination of 7, 's. That is
e = 2<eFT,

where < -, - ) represents the inner product of two vectors.

In the same manner, if each vector in the signal subspace of the physical array
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data , ie., P(k, k,w), can be represented by a linear combination of orthonormal basis

vectors, i.e, @, 's, induced from the synthesized array data, ie., S(k,, @), then the size

of the signal subspace from physical array data is the same as that from synthesized
counterpart.

We use the Gram-Schmidt procedure to construct an orthonormal set of basis
functions from the discrete two-dimensional synthetic aperture data, ie., S(k, w). We

then project the discrete three-dimensional physical array data, ie, P(k,,%, w) onto

the signal subspace spanned by the orthonormal basis functions (or, equivalently, the
synthetic aperture data). We then compare the obtained signal, i.e.,

p(ku,ku,w) = g‘\ (P(ku,k,,,a)),$,-> Qi

with the actual physical array data, i.e., P(k,, k,, ®). And the results showed that a
linear combination of the orthonormal basis functions can produce a good estimate of
the physical array data.

In our experiment, we used 64 samples in aperture % € [—256,256] with
sample spacing 4, = 8(meters) which satisfies the condition to avoid aliasing.[4] The

object area which is centered at the origin is within the disk of radius X (=64 (meters)
and the distance X; is 25600(meters). We used 64 temporal frequencies with
1/(4X () as a sample spacing of the wavenumber centered at 57 (radians/ m).

We estimate the physical array data from synthetic array basis functions for
multi-target in the object area positioned at (X;,0), (X;,30), and (X ;+30,—20).

Fig. (4.a,b) shows actual and estimated physical array data in the £k, domain for a
fixed k, and temporal frequency. The SNR of the estimator is as good as 31.35 (db).

IV. Conclusion

We introduced an approximation free inversion scheme in SAR imaging and
showed the synthesized aperture actually working as an physical antenna of the same
size. This was proved by comparing signal subspace of physical and synthesized array
data theoretically and numerically. The results showed that the synthesized array data
fully span the physical array data with the same system geometry and strongly support
the previously proposed inversion scheme valuable in high resolution radar imaging.
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Fig. 1 Monostatic SAR Imaging system geometry
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Fig. 4 a) Rea! part, b) Imaginary par, of estimated physical array data using SAR dala basis
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