The Third AFSS(1998), 756 — 761

A DATA COMPRESSION METHOD USING ADAPTIVE BINARY
ARITHMETIC CODING AND FUZZY LOGIC

Jer Min JOU, Pei-Yin CHEN

Department of Electrical Engineering, National Cheng Kung University
1 University Road, Tainan, Taiwan 70101, Republic of China
Tel: +886-6-2387092 Fax: +886-6-2345482 E-mail:;jou@cad2.ee.ncku.edu.tw

Abstract

This paper describes an on-line lossless data compression method using adaptive binary arithmetic coding.
To achieve better compression efficiency. we employ an adaptive fuzzy-tuning modeler, which uses fuzzy
inference to deal with the problem of conditional probability estimation. The design is simple, fast and
suitable for VLSI implementation because we adopt the table-look-up approach. As compared with the out-
comes of other lossless coding schemes, our results are good and satisfactory for various types of source data.

Keywords: Lossless data compression, Adaptive arithmetic coding, Fuzzy inference

1. Introduction

Since arithmetic coding [1-8] can approach the
entropy limit as long as the statistics are accurate, it
is superior to Huffman coding, and has been used
vastly for data compression. However, arithmetic
coding tends to be slow, because in standard form it
requires at least one multiplication operation per
input symbol. Moreover, an extra division operation,
if used adaptively, may be needed at every coding
step. Many approximate methods, which may re-
place the multiplication or division operations by
less expensive operations such as shifts and addi-
tions, have been proposed to reduce the computa-
tional complexity [2-7]. Some VLSI architectures
of arithmetic coding also have been presented [1-4]
to improve the coding speed. The drawbacks of the
methods are that the probability estimations are not
accurate enough for various types of source data or
the arithmetic computations are still complex as far
as hardware implementation is considered. The
characteristics of various source data bear a lot of
uncertainty and are hard to be extracted, so it is not
easy to construct a good probability estimator that
always provides accurate probability estimation for
different types of data. Here. we use fuzzy inference
[9][10] to solve the problem of probability estima-
tion.

This paper presents a novel division-free binary
arithmetic coding method, suited for implementa-
tion with VLSI technology. In this design we adopt
a binary order-o fixed-context model, which uses

the o previous symbols as the state (or context). To
reduce the complexity of hardware implementation
and to prompt the coding throughput, we use the
table-look-up method to construct an aduptive

Juzzy-tuning modeler. With the aid of fuzzy inferen-

ce process which dynamically selects the probabil-
ity-tuning step, the modeler can determine the esti-
mated probabilities more efficiently and precisely.
Therefore, the compression efficiency of our
method can be improved very much. According to
the experimental results, the proposed method
works better than other lossless compression meth-
ods, such as Huffman, approximate arithmetic [3, 4.
6, 8], and Lempel-Ziv, for different types of source
data: text files, image files. and binary files. Besides,
in the design some on-line processing issues of ar-
ithmetic coding such as source termination and
carry-over are solved efficiently. A VLSI architec-
ture for the method has been developed and imple-
mented by using 0.8um CMOS technology. and it
vields an encoding and decoding rate of 12
Mbits/sec with a clock rate of 50 MHz.

2. The proposed adaptive arithmetic coding
method

The process ot general arithmetic coding can be
split into two tasks: coding and modeling. A coder
actually produces the compressed bit-stream and a
modeler feeds probability estimation information to
it. The encoding process starts by initializing a
semi-open interval [0,1), which is recursively divid-

—756—

ed to sub-intervals in proportion to the conditional
probabilities of the symbol being encoded. Let 4,
denote the width of the selected sub-interval at sta-
ge n and C, represent the position of the lower
boundary of the selected sub-interval. While en-
coding the sth symbol, x, in the input stream, the
process requires the following iterative computa-

tions:

AIH-I = An X ﬁu(x's)' (])
x=1

Cour =C, 44, x Y D, (ils). @
izl

where p (x}s) is the estimated, conditional prob-
ability of symbol x at stage » given the previous
string §.

If a general arithmetic coding is applied to a bi-
nary alphabet (0 or 1), it permits a simple and fast
coding process, and is more suitable for hardware
implementation. Thus, we adopt the binary arith-
metic coding in our method. The proposed coding
system consists of two main components: the adap-
tive fuzzy-tuning modeler (AFTM) and the coder.
While encoding the wsth input binary symbol
X (symbol “0” or symbol “17), the AFTM deter-
mines the p, (x|s) and feeds it to the coder. Here,
we employ the order-o fixed-context model (or o-
memory Markov model), which means § is com-
posed of o previously coded bits before x. The
coder uses the p (x|s) and X to produce the
compressed bit-stream. Finally, the AFTM updates
the conditional probability (or determines the new
conditional probability p,,,(x]s)) for the next
coding cycle. Figure 1 shows the encoding proce-
dure of our method. Obviously, p,(0|s) is the only
probability concerned during the whole coding
process since p,(l|s) can be calculated by
1-p,(0]s). In the following discussion, the AFTM
and the coder are stated respectively.

2.1 The adaptive fuzzy-tuning modeler

The first task of AFTM is to determine p, (0] s)
for each input bit. Here, the p (0]s) is calculated
based on the relative occurring frequency of symbol
“0” at stage n under current state s. It can be de-
scribed as

count0, (s)

. 3)
countN , (s)

p,0ls)=

where count(, (s) is the number of 0’s that has oc-
curred under state s until stage » and countN ()
stands for the total number of input bits that has

occurred under state s until stage ». To avoid the
expensive division operation needed and to make
hardware implementation easier, we apply two ta-
bles to approximate the p, (0]s). We simulated the
coding process, found the 128 possible probability
values with higher occurring frequency for
p,(0]s), and then saved them in a probability ta-
ble called Prb, which is applied to approximate the
possible values of p (0s). Since each of the 2°
possible states has its own p, (0|s), an Adr table is
constructed to store the 2° pointers, each of them
points to one of the entries of Prb to get the corre-
sponding state’s p (0] s).

After the nth bit is coded, the AFTM will update
p,(0]s) (or determine p (0|s)) for the fol-
coding cycles. From (3), we know
P,.,.(0}5) can be given by

i)nﬂ(ols) =

lowing

count0, ., (s)
countN ., (s)

{0 +1
count0,)+ e the nth bitisa 0's,
countN , (s)+1

> 10 (s
_count0,(5) it the nth bitisal's.
countN , (s)+1

4)

Apparently, the conditional probabilities will
change faster/slower when few/many input data has
been compressed. After many experiments, we
found that some source data files require faster
probability changes and some require slower prob-
ability changes to achieve better compression effi-
ciency. Hence, based on (4) a new way is applied to
approximate the new conditional probability as
follows:

count0, (s)
ﬁT(s)v
couniV, (s) |

+1
if the mth bitisa's,

g,(s)
count0,(s)

g,(s)
countN ,(s) +l
o,(s)
where o (s) is the probability-tuning step used to
reflect the degree of variation of conditional prob-
abilities. To avoid the division operation, two offset
tables are applied to approximate the p, (0|s). If
the current input bit is a 0’s and the tuning step o
is given, we can prefind by using (5) the value of
P, (0]s) for each of the 128 possible values of
p,(0]s) stored in the Prb table, calculate the 128

Pun(0]5)= (5)

if thenthbitisal's,

—~7587—

offsets (or distances) between the corresponding
indexes in Prb table for the values of p, (0]s)
and p, (0]s), and then store the 128 offsets in an
offset table, named as Ost0_. Similarly, the Ostl
table stores the 128 offsets for the current input “1.”
Figure 2 shows the block diagram of AFTM. By
changing the pointer’s value stored in the Adr table
with the distance provided by either the table
Ost0, or Ostl_, we can obtain the corresponding
7., (0]s) as follows:

Pui(015) = p,(0]5)+4p,(01]5)

Prb[Adr[s]+ Ost0_[Adr[s]]] if thenth bitisa 0s,
- {Prb[Adr[s]+Ostld[Adr[s]]] if the nth bitisals.
In fact, there are a large number of tuning steps can
be selected. It is certainly impossible and unpracti-
cal to use too many steps, since too many tables
(memories) are required. Therefore, after many ex-
periments we chose only five different steps: 8, 24,
32, 40, and 64 in the design. As shown in Fig. 2, the
five offset tables are indexed by the value of Adrs]
simultaneously, and one of the five offset values,
selected with a proper tuning step o generated by
the fuzzy inference process, is used to determine the
P (O] 5).

The fuzzy inference process, performed in our
design, is based on the concepts of fuzzy implica-
tion and the compositional rules of inference for
approximate reasoning [10}. The main function of
fuzzy inference is to select a proper probability-
tuning step to tune the p, (0]s) effectively. For
each possible state, we use a 10-bit queue to record
the 10 previously coded bits under the state. Two
evaluation parameters are used to observe the queue:
the switching activity and the repeating activity.
The switching activity (sa) means the number of
binary symbol transitions (0 changes to | or |
changes to 0) in the state queue, and the repeating
activity (ra) means the number of identical bits
counted from the last bit of the queue. Obviously,
small sa means almost no transitions in the previ-
ously coded bits and suggests that higher tuning
step is more suitable for good performance. Small
ra means almost no repetition and suggests that
lower tuning step is more suitable for good per-
formance. Here, we use the sa and ra as the inputs
to infer the proper probability-tuning step, & . The
corresponding membership functions and the fuzzy
control rules used for the step selection problem are
shown in Fig. 3. For the purpose of reducing the
design complexity and achieving higher inference
speed, the fuzzy inference process is implemented
by table-lookups.

2.2 The Coder

While coding the sth input bit, the coder accepts
the p(0|s,), calculates the A andC,.,, nor-
malizes the A, andC, ., if necessary, and pro-
duces the compressed result at the encoding mode
and the uncompressed data at the decoding mode.
Besides, in the design the coder uses a new bit-
stuffing technique to solve the problems of source
termination and carry-over together with efficiency.
A k-bit register called R is used as the output buffer
during the encoding process. That is, the com-
pressed bits shifted out from C are put temporarily
into R instead of being sent out directly. Thus, car-
ries generated from C + NewA at Step 2 in Fig. |
can propagate into R. However, if R contains a con-
secutive sequence of 1-bits, the carry propagating
into it would propagate through and out into the
coded outputs which have been transmitted. Two
extra stuffed bits are added and used to resolve this
problem. If all of the & bits of R are I’s, two stuffed
bits 00" are added and shifted into the right side of
R to block the carry-over propagating. The second
stuffed bit (or bit 0 of R now) may be changed to |
if a carry-over occurs during encoding. Because no
carry-over can propagate to the same bit position of
R twice, as demonstrated in [7], the first stuffed bit
(or bit 1 of R) will always be 0. This feature is used
to indicate the source termination condition, that is,
we send the consecutive (k+1) 1’s as the termina-
tion mark when all the input bits are coded. If the
decoder receives £ 1’s while decoding, it will check
the next two input bits (stuffed bits). If the stuffed
bits are “00,” the decoder just ignores the two
stuffed bits. If the stuffed bits are “01.” the decoder
will add 1 to € and set R to 0. If the stuffed bits are
“1x” (x: don't care), the decoder will end the de-
coding process since the termination mark (con-
secutive (k+1) 1’s), which consists of £ I’s in R and
a 1’s in the first stuffed bit, is detected.

3. Experimental results and implementation

For comparison purposes, we considered some
different schemes for various kinds of source data.
Table 1 shows the compression efficiency of text,
image, and binary files for various schemes. In it,
we chose randomly 100 text files, 50 image files
and 40 binary files, and let the total size of each
type of files be about 30 Mbytes. HUF (compact
utility on UNIX) is the adaptive Huffman scheme.
LZW (compress utility on UNIX) is the LZ78 cod-
ers. ARTH is an arithmetic coding scheme imple-

—758—

mented by Jiang [4]. AR B, AR MF. and
AR_MDF are the arithmetic coding methods pre-
sented in [8], [3] and [6], respectively. AFT is the
proposed coder. For easier comparisons, AR B,
AR MF, AR MDF, and AFT are all implemented
with the binary order-10 and order-16 fixed-context
modeler, respectively. Consequently, our method
achieves better compression efficiency for the three
types of data.

Based on the hardware optimization and trade-
off concepts taken from high level synthesis, we
have developed a feasible VLSI architecture for the
proposed method using Cadence’s Verilog simula-
SUN SPARCI0 station. An
asynchronous circuit for 1/0
communication is designed, thus the 1/O operation

tor run on a
interface

and coding operation can be done in parallel.
Besides, the concept of “design for testability™ is
used and a full scan is implemented in the design.
Under Verilog simulation, it yields a compression
and decompression ratio of 12 Mbits/sec with a
clock rate of 50 MHz.

4. Conclusions

For on-line lossless data compression, we pro-
posed a novel adaptive arithmetic coding method,
which can be easily realized with VLSI technology.
With the help of fuzzy inference, better compres-
sion efticiency can be achieved for various types of
source data. The drawback of the method is that we
require one multiplication operation per input bit to
get more accurate probability estimation. However,
the method still can achieve high coding speed by
using a simplified parallel multiplier proposed by us
in [11], which requires approximately half of the
area of a standard parallel multiplier without sacri-
ficing any performance

5. Acknowledgement
This research was supported in part by the Na-

tional Science Council, Republic of China, under
the Grant NSC-86-2221-E-006-022.

References

[1}] B. Fuand K. K. Parhi, “Two VLSI design ad-
vances in arithmetic coding.” in [EEE Int
Symposium of Circuits and Systems, 1995, pp.
1440-1443.

[2] W.B. Pennebaker, J. L. Mitchell, G. G. Lang-
don and R. B. Arps, “An overview of the basic
principles of the Q-coder adaptive binary ar-
ithmetic coder,” /BM J. Res. and Develop., vol.
32, no. 6, pp. 717-725, 1988.

{3] G. Feygin, P. G. Gulak and P. Chow, “Mini-
mizing error and VLSI complexity in the mul-
tiplication free approximation of arithmetic
coding,” in Proc. [EEE Data Compression
Confernce, 1993, pp. 118-127.

[4} J. Jiang, “Novel design of arithmetic coding
for data compression,” [EE Proc.-Comput.
Digit. Tech., vol. 142, no. 6, pp. 419-424,
1995.

[5] D. L. Duttweiler and C. Chamzas, “Probability
estimation in arithmetic and adaptive-huffman
entropy coders,” IEEE Trans. Image Process-
ing, vol. 4, pp. 237-249, 1995.

[6] L. Huynh, “Multiplication and division free
adaptive arithmetic coding techniques for bi-

“in Proc. IEEE Data Compres-
sion Conference, 1994, pp. 264-273.

[71 G.G. Langdon and J. Rissanen, “Compression

level images,’

LR}

of black-white image with arithmetic coding,
IEEE Trans. Communications, vol. 29, no. 6,
pp. 858-867, 1981.

[8] I H. Witten, R. M. Neal and J. G. Cleary,
“Arithmetic coding for data compression,”
Communications of ACM, vol. 30, no. 6, pp.
520-540, 1987.

[9] L. A. Zadeh, “Fuzzy sets,” Information and
Control, vol. 8, no. 6, pp. 338-353, 1965.

[10] C. C. Lee. “Fuzzy logic in control systems:
Fuzzy logic controller-Part | & Part 11, IEEE
Trans. Syst., Man, Cybern., vol. 20, no. 2, pp.
404-435. 1990.

{11] J. M. Jou, S.-R. Kuang, “Design of a low-error
fixed-width multiplier for DSP applications,”
Electronics Letters, vol. 33, no. 19, pp. 1597-
1598, 1997.

—759—

Encoding Mode

compressed result

input bit, x -
Coder
4 P.(0]s)
e] { AFTM

bit,, ,

Decoding Mode

uncompressed bit,

>

compressed result ¢
— > Coder o] bit,,
Delay
p.(01s) AFTM
state s
Fig. 1. The encoding procedure of the proposed method.
the bit being coded Jwmit | »
’delay 1
Ost0,Ostl, | Prb Table
o[310 \y,‘: 0 1/256=0.004
> 6| 1]-1 I} :
Adr Table 7l 014 ! .
=T R L1054
0] 18 1 i 8 X
o
> alaTe y E 62| 114/256=0.445
127 6 [-18 ; :
Ost0,, Ostl R -
o[24] 0] nK 127 255/256=0.996
current state s Adr|s|=61 .
sl o 61 >» 61l 3| .51 '
i 270 |24 !
Ost0, Ostl,, |
o[B[0]" !
) > 6l 1 (}J; Ost [Adr [51]
127 0_|-28 :
-1 e N
H —>» 61l_d4 -]
:;update of Addr|s] v o 6 Lo yV
; (for the next cycle) /Jr\‘
™

tuning step O’n(S)

(determined by fuzzy inference process)

Fig. 2. The block diagram of the AFTM.

—760—

>

P, (0ls)

(to the coder)

S MS M MB MS M MB B

01234367809 1234567
Switching activity saq Repeating activity ra
A sa
S MS M MB B S MS M MB B
B S BI|MB| M S S
MS| B\ MB| M| MS| S
\ l ¢ > ra M| B | MB| M | MS |MS
0 10 20 :30 40 50 : 60 MB| B |[MB |MB| M | M
: B| B} B B |MB| M
step 8 - \tcp 24 step 32 step 40 step 64
) S: Small MS: Medium Small M: Medium
Output o MB: Medium Big B: Big

Fig. 3. The corresponding membership functions and fuzzy rules used for the step selection problem.

TABLE 1 The average compression results of three types of files for various coding methods

File type 100 Text Files | 50 Image Files |40 Binary Files | Average
Total Size (bytes) 30074354 30114290 30012386 ce
HUF 44.0% 10.9% 24.0% 26.3%
LZW 59.2% 20.4% 31.0% 36.9%
ARTH 49.0% 19.8% 34.4% 34.4%
AR B(10) 50.3% 27.8% 29.6% 35.9%
AR MEF(10) 49.5% 25.4% 28.1% 34.3%
AR _MDF(10) 50.2% 27.6% 29.4% 35.7%
AFT(10) 51.1% 31.1% 39.1% 40.4%
AR B(16) 60.4% 34.7% 40.2% 45.1%
AR MF(16) 59.1% 34.5% 39.0% 44.2%
AR MDF(16) 60.3% 35.4% 40.3% 45.3%
AFT(16) 63.0% 35.9% 48.7% 49.2%

o the number of bits of original input - the number of bits of compressed output
ce: compression efficiency= - — x 100%.
the number of bits of original input

—761—

