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Abstract

This paper makes a study of the Shapley value in cooperative fuzzy games, games with fuzzy coalitions,
which enable the representation of players’ participation degrees to each coalition. The Shapley value
has so far been introduced only in a class of fuzzy games where a coalition value is not monotone with
respect to each player’s participation degree. We consider a more natural class of fuzzy games such
that a coalition value is monotone with regard to each player’s participation degree. The properties of
fuzzy games in this class are investigated. Four axioms of Shapley functions are described and a Shapley

function of a fuzzy game in the class is given.
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1. Introduction

The Shapley value[1][2] is a well known solu-
tion in cooperative game theory. Imagine the sit-
uation where if some economic agents make up a
cooperative relationship, i.e., a coalition, then they
can get more gains than that if they do not so. In
such cases, one of their interests is how much a a-
gent can get a share from the coalition. The Shap-
ley value is a vector whose element is each play-
er’s share which is derived from several reasonable
bases.

The Shapley value has been investigated by a
number of researchers. Most of them treat games
with crisp coalitions. However, there are some sit-
uations where some agents do not fully participate
in a coalition, but to a certain extent, for exam-
ple, they offer only a part of resources of their
own. Such a coalition can be treated as a so-called
fuzzy coalition. The fuzzy coalition, first intro-
duced by Aubin [3][4], is a collection of economic
agents, i.e., players, who transfer fractions of their
representability [5] to a specific coalition. Namely,
a membership degree shows to what extent a play-
er transfer his/her representability. In this paper,
we discuss the Shapley value in fuzzy games, games
with fuzzy coalitions.

Butnariu [6] investigated the Shapley value in
fuzzy games. He introduced a Shapley function in
a limited class of fuzzy games. Given a fuzzy game
and a fuzzy coalition, a Shapley value is obtained
through a Shapley function. His class is not nat-
ural, because the set function v(5) which shows a
profit from a coalition S is not monotone nonde-
creasing with regard to each player’s participation
degree.

The aim of this paper is to introduce a Shapley
function in more natural class of cooperative fuzzy
games, which is monotone nondecreasing with re-
gard to each player’s participation degree. The

class treated in this paper is a set of fuzzy games
where a value of each fuzzy coalition can be repre-
sented by a Choquet integral of the coalition with
respect to the associated crisp game. In such a
fuzzy game, a coalition value is monotone with re-
spect to each player’s participation degree. The
properties of fuzzy games in the class are investi-
gated and a Shapley function is discussed. Finally,
an example is given to show a possible application
of the proposed Shapley function.

2. Notations and Definitions

In this paper, we consider n-person cooperative
fuzzy games with the set of players N = {1,...,n}.
A fuzzy coalition is a fuzzy subset of N identified
with a function from N to [0,1]. Then for a fuzzy
coalition S and a player 7, S(i) indicates the grade
of membership of i to S, i.e., the ¢-th player’s par-
ticipation degree to S. For a fuzzy coalition S, the
level set is denoted by [S], = {i € N | S(i) > h}.
The set of fuzzy coalitions is denoted by L(N).
Particularly, P(N) denotes the set of crisp sub-
sets of V. For the sake of simplicity, we define
LU;NY={SeL(N)|SCUCN}.

An n-person fuzzy game is a function v from
L(N)to R, = {r € R|r > 0} such that v(§) = 0.
G(N) denotes the set of n-person fuzzy games.
Functions from P(N) to R, are called crisp games,
the set of which is denoted by Go(N). According
to the classical interpretation by von Neumann and
Morgenstern [7], v(S) is regarded as the least prof-
it when the crisp coalition S is formed. In this
interpretation, v € Gp(N) satisfies the superaddi-
tivity. This paper follows this interpretation; thus
all v € Go(N) treated in this paper are superaddi-
tive as an extension of original one.

We introduce the superadditivity into fuzzy games

as follows:
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Definition 1

tive if
v(SUT) > v(S)+v(T)

for any S, T € L(N) such that SNT = {.

We define a payoff function of a fuzzy game
based on the idea of imputation in Go(N):

v € G(N) is said to be superaddi-

Definition 2 A payoff function of a fuzzy game
v € G(N) is a function x from L(N) to R’} satis-
fying the following:

1. z;(U)=0 for any i & Supp U,

2. Yieni(U) =v(U),

3. z(U) 2 U®) -v({i}),
where.z(U) = (z1(U), z2(U), ..., za(U)).

Definition 3 [8/,[9] Let (X,F,p) be a fuzzy mea-
sure space and g a positive-valued simple function
over X, i.e.,

o) =St x, (7).

1 if re D
0 Zf r ¢ Dl
Then the following is called a Choquet integral of
the function g with regard to p:

where xp,(r) = (I =1,...,m).

(©) /Xg o= 3 HA) (= 1)

where 0 =t <t; < - <tmand Ay = D/UD; U
.o U Dyy,.

3. The Class of Games, Go(N)

In this section, we define a new class of fuzzy
games, G¢(N), along with their properties.

Definition 4 Let H(S) = {S(z) | S(Z) > 0},
q(S) be the cardinality of H(S), and rewrite the
elements of H(S) in the increasing order as h; <
-+- < hgsy. Then v is called a fuzzy game ‘with
Choquet integral form’ iff the following holds for
any S € L(N):

q(5)
v(8) =Y v((Sh) - (e = hus). 1)
=1
We denote by Go(N) the set of v with Choquet
integral forms.

This paper deals with the class of games, G (N).

Remark 1 We should note that v € Go(N) in
the form of (1) is completely specified by the values
{v(S8)| S € P(N)}, i.e., it is derived from a game
in Go(N). In this sense, a fuzzy game with Cho-
quet integral form v € Go(N) can be defined by a
game vy € Go(N) and vice versa. For the sake of
simplicity, the usual game associated with a fuzzy
game with Choquet form v € G¢(N) is denoted by
v € Go(N).

Remark 2 It is apparent that (N, 2V, v) is a fuzzy
measure space and S(i) is a positive simple func-
tion over N. Therefore (1) is a Choquet integral of
function S with regard to v.

Remark 3 For v € Go(N) and S,T € L(N)
such that SC T

v(S) < o(T),

whenever v € Go(N) is superadditive. In other
words, if v € G (N) then the function v is non-
decreasing with respect to each player’s grade of
membership.

As described in Section 2, we adopt the clas-
sical interpretation of coalition value v(S) by von
Neumann and Morgenstern. Since this interpreta-
tion lead to the superadditivity of v € Gy(N), any
v € Ge(N) is nondecreasing with respect to each
player’s grade of membership in this paper. More-
over, any v € G¢(N) is supperadditive, as shown
in the following proposition.

Proposition 1 v € G¢(N) is superadditive iff
v € Go(N) is superadditive.

We can find G¢(N) more natural than Butnariu’s
class of games from the preceding remark.

Lemma 1 For v € G¢(N) and S,T € L(N)
such that SCT,

v(S) = v(T)

<= v([S]n) = v([T]h), Vhe(01]

4. A (v:
Ge(N)

~)-null Player and a v-carrier in

This section is dedicated to showing concepts
and properties of a (v : v}-null player and those of
a v-carrier in Go(N). (v : 74)-null players and v-
carriers are closely connected with a Shapley func-
tion in G {N).

4.1. A (v:y)-null Player

For some v € G(N) there may exist a player
who cannot contribute to the coalition value fur-
ther if his participation degree exceeds a certain
degree v. We call him a (v : ¥)-null player, which
is an extension of a null player in Go(N).

Definition 5 Let v € Go(N), U € L(N) and
S € L(U;N). Let SY € L(N) be defined by
if j=1i,

. U(7)
SY () = RGN A
o= S0 F 7
If the following is valid, then the player i is called
a (v : v)-null player in U:
v(S) =v(SY), VSeLWU;N)st S@)>~.

Remark 4 For v € G¢(N) and U € L(N), if
the player i is a (v : v)-null player in U, then he
is @ (v:v")-null player in U for anyv' € {+' | v <
Y < U@}
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Theorem 1  Letv € Go(N) andU € L(N). The
player i is a (v : v)-null player in U € L(N) ff
he/she is a null player in [Uly for any h (v < h <
U4)).

This theorem shows that a (v : +)-null player in U

corresponds to a usual null player in the level set
Ul (v < k < UG3)).

4.2. A v-carrier

We can define a v-carrier as a natural extension
of a carrier in Go(N).

Definition 6 Let v € Go(N), U € L(N) and
S € L(U;N). If S satisfies the condition, then S
ts called a v-carrier in U:

v(SNT)=v(T), VTeL(U;N).

Particularly, if some v-carrier in U is included by
any other v-carrier in U, then it is called the s-
mallest v-carrier in U.

Remark 5 Ifv € Go(N) and U € L(N), then
U is a v-carrier in U.

Remark 6 Letv € Go(N),U € L(N) and S,S' €
L(U;N). If $ 2 8 and 8’ is av-carrier in U, then
S is also a v-carrier in U.

Theorem 2 Letv e G (N), U € L{(N) and S €
L(U;N). S is a v-carrier in U iff [S],, is a carrier
in [Uln for any h € (0,1].

v-carriers in U correspond to carriers in [U],. Thus

we can guarantee the existence of the smallest v-
carrier.

Theorem 3 Let v € G¢(N). There exists the
smallest nonempty v-carrier in U iff v(Supp U) >
0.

The following remark shows a relationship be-
tween (v : y)-null players and v-carriers.

Remark 7 Letv € G¢(N), U € L(N) and R €
L(U; N). Suppose that R 1is the smallest v-carrier
U and that there exists a nonempty set of (v : y)-
null players, which includes the player i. Then we
have:

R@E) <y < U@E).
5. A Shapley Function

The present section deals with a Shapley func-
tion based on the original Shapley value[1], [2].

Definition 7 Let G be a subset of G(N). A Shap-
ley function over G is a function f from G to
(RL)EN) which satisfies the following four aziom-
s.

Axiom 1: Ifv € G and U € L(N), then

Yoien fit)(U) = o(U)
fi(v)(U)=0 VigSupp U.

where fi(v)(U) is the i-th element of f(v)(U) €
R".

Axiom 2: Ifv € G, U € L{(N), S € L(U;N)
and T is a v-carrier in U, then

fi)(U) = fi(v)(T).

Axiom 3: Letve G, U € L(N), Re L(U;N)
and S € L(R; N). Suppose that R is the smallest
v-carrier in U. We define P;;[S] € L(N) by

S$(), if k=1,
Py[SI(k) =S SG), if k=4,
S(k), if k#i .
If R(i) = R(j) and
v(S) =v(P;[S]), VS eL(R;N),

then

fi()(U) = f;(v)(U).

Axiom 4 :  For vy,v2 € G(N), let vy + vy be de-
fined by (v1 + v2)(S) = v,(S) + v2(S) for any
S € L(N). ForU € L(N), ifvy, vo, v + 02 €
G, then

filvr +v2)(U) = fi(v1)(U) + fi(v2)(U)
for anyi € N and any U € L(N).

5.1. A Shapley Function for Go(N)

If we take G = Go(N) in Axioms 1 ~ 4, they
coincide with the ordinary axioms of the Shapley
values in crisp games. Thus the following are im-
mediately found.

Remark 8 There exists a unique function f' from
Go(N) to (RV)PIN) such that Azioms 1 ~ 4 are
satisfied with f' and Go(N) instead of f and G,
respectively. If U € P(N) then the function f' can
be represented as follows:

fi(w)(U)
> BUTHIUD - ((T) — w(T\{i}))
TeP(U;N)
= -~ if i€ P(U;N)
0
if ig P(U;N)

where P(U;N) = {T € P(U;N) | T 3 i} and

— . —)!
Bt u) = (t—l—)-,iu for T € P(U,N) and
U € P(N).

Remark 9 For a Shapley function f'(v) over Go(N)
and any game v € Go(N), f'(v) is a payoff func-
tion of v.

Remark 10 If v € Go(N) and S C T, then
F1 () (S) < fl(w)(T) for anyi € N.

5.2. A Shapley Function for G¢(N)

This subsection deals with a Shapley function
for G- (N). Now we show our main theorem.
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Theorem 4 Letv € Go(N) andU € L(N). The
function f defined as follows is a Shapley function
over G¢:(N):

L) =i~ b)) FOW). (@)

=1
Here f' is the function given in Remark 8.

The proof of the above theorem requires the fol-
lowing lemma.

Lemma 2 The function f;(v)(U) defined by (2)
s non-decreasing with respect to set inclusion, i.e.,
with respect to each player’s participation degree.

This lemma shows one of important properties of
I

Theorem 5 For a Shapley function f over G¢(N)
and any game v € G¢o(N), f(v) is a payoff func-
tion of v.

The following theorem provides a relationship
between the Shapley function values for two strate-
gically equivalent games in G (N).

Theorem 6 For v,v' € Go(N), of
V(S) =c-v(S)+ Y S()-a;

ieN
where ¢ > 0 and a;, then

fiU) =c- fi)U) + V(i) - a;

6. Application

VieN.

Consider three economic companies, named 1,
2 and 3. Company ¢ has 100 units of resource R;
(i=1,2,3). Company i can obtain gains v({i}) by
producing 100 units of Product P; from 100 units of
Resource R;. Valuable products can be produced
by compounding two and three resources among
Ry, Ry and R3. Namely, one unit of Product P;;
can be produced by compounding one unit of R;
and one unit of R; (i < j, 4,j € {1,2,3}). More-
over, one unit of Product Py23 can be produced by
compounding one unit of R, one unit of R, and
one unit of R3. However, to produce Product P;;
(i < j), Companies ¢ and j have to make up a
cooperative relationship, and to produce Product
Pj,3, Companies 1, 2 and 3 have to. If Companies
¢ and j make up a full cooperative relationship,
i.e., a crisp coalition {7, j}, then they can obtain
gains v({¢,j}) by producing 100 units of Product
P;; (i < 7). Similarly, by a crisp coalition {1,2, 3},
they can obtain gains v({1, 2,3}) by producing 100
units of Product Pj33. Here, we suppose the su-
peradditivity of v, i.e., for any S,T C {1,2,3} s.t.
SNT =0

v(SUT) > v(S)+v(T).

As is in the real life, each company do not need
to supply all units of resource the company has to
the formed cooperation. Thus, we have to consid-

Table 1. f/(v)(U)

U\ Companyi 1 2 3
m 50 0 0
{2} 0 100 0
{3} 0 0 100
(1,2} 875 1225 0
{1,3} 875 0 1225
{2,3} 0 140 140
{1,2,3} 105  157.5 157.5

er a fuzzy game. For example, when Company i
can supply only 40 units of R; to the cooperation
between i and j, we regard Player ¢’s participation
degree (membership degree) as 0.4 = 40/100. In
such a way, a fuzzy coalition is interpreted. On the
other hand, in the setting of this example, the val-
ue of a fuzzy coalition can be obtained by Choquet
integral. Consider a fuzzy coalition U defined by

U(1) =02, U(2) =04, U®3) = 0.5.

This fuzzy coalition means that a cooperation a-
mong Companies 1, 2 and 3 is formed and Compa-
nies 1, 2 and 3 supply 20, 40 and 50 units of R;,
R, and Rj3 to the cooperation. Under this cooper-
ation, they can produce 20 units of P23, 20 units
of P53 and 10 units of P;. Thus the value of this
fuzzy coalition is evaluated by Choquet integral of
U{%) with respect to v, i.e.,

S dv

) = ©]f

q(S)
= D 0((STn) - (b1 = hyy)
=1
= 02-v({1,2,3}) + (0.4 - 0.2) - v({2,3})
+(0.5 - 0.4) - v({3})

Now, let us estimate each company’s share of
v(U) in the fuzzy coalition U. To do this, we can
employ the proposed Shapley function. If v is de-
fined by

v({1}) =50, ({2} U {3}) = 400,
v({2}) = 100, »({1} U {3}) = 300,
v({3}) = 100, »({1} U {2}) = 300,
and v({1} U {2} U {3}) = 600,
we obtain v(U) = 210.
The ordinary Shapley values are obtained as in

Table 1.
The i-th Company’s share can be calculated by

fi()(U) 0.2 f{(v)([Ulo.2)
+(0.4-0.2) - fi(v)([Ulo.a)
+(0.5~0.4) - fi(v)([Ulo.5)
= 02 fzI(U)({la 273})
+0.2- fi(v)({2,3})
+0.1- fi(v)({3}).

Therefore company 1's share can be calculated
as follows:
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H)(U)

References

0.2- fi(v)({1,2,3})
+0.2- fi(v)({2,3})
+0.1- f1(v)({3})

30.

In the same way, Companies 2 and 3’s shares can
be calculated as follows:

L)U) =

fi)(U)

02- f4(v)({1,2,3))
+0.2- f3(0)({2,3})
+0.1- f3(v)({3))

85,

0.2- f(v)({1,2,3})
+0.2 - f3(v)({2,3})
+0.1- f3(v)({3})
0.2 f3(){({1,2,3})
95.

7. Conclusion

We have introduced a new class of fuzzy games,
Gc(N), and a Shapley function over it, which sat-
isfies the four axioms. The class is more natural
than Butnariu’s, because any function v € G¢(N)
is nondecreasing with respect to set inclusion, i.e.,
with respect to each player’s participation degree.
However, we left the following problems open: (1)
continuity of any set function v € G (N) with re-
spect to set inclusion, and (2) uniqueness of the
Shapley function for G¢(N).
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