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Abstract

This paper deals with our proposed fuzzy inference method, in which the fuzzy relation is represented by the

membership functions of the antecedent and consequent parts, it is not used any fuzzy composition.

point of this method is that the membership function of

The strong
an inferred conclusion has a simple shape and thus its

meaning can be interpreted easily. Firstly, the proposed method is explained, and then it is applied to fuzzy

modeling of distributed data.
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1. Introduction

In usual fuzzy inference methods[1-5], an inferred
conclusion will have a complex shape and it is difficult
to interpret its meaning as it stands. A representative
value of its membership function (which is normally
calculated by the center-of-gravity method, etc.) is
generally used as the inference output.  Therefore, the
inferred conclusion using such methods handles a real
number only, not a fuzzy set.

To cope with such problems, there are some
approaches, which use interpolative technique.
Kéczy and Hirota proposed a fuzzy inference method
called a linear interpolative method [6, 7], which
lincarly interpolates a conclusion using distance of
input variable space. Especially, this method
mentioned to a sparse fuzzy rule base. When
membership functions of fuzzy rules and input fuzzy
sets are triangular type, in this method, the inferred
conclusion will be also triangular type. However, it
was found that the inferred conclusions by this method
are sometimes abnormal fuzzy sets [8, 9].

We proposed an interpolative fuzzy inference
method (10}, which doesn’t use a fuzzy implication to
transform fuzzy rules to a fuzzy relation. The
proposed method assumes that the fuzzy sets in the
consequent part of fuzzy rules are defined by
membership functions, which depend on some
parameters. The fuzzy relation is defined by these
membership  functions  with  antecedent  part
membership functions. The inferred conclusion using
the proposed method has a membership function of
simple shape. Hence, its meaning can be easily
interpreted. If the fuzzy sets in the consequent part of
the fuzzy rules represent possibility distributions, this

fuzzy inference method will be able to perform as a
possibility distribution model [11].

Firstly, the proposed method is explained, and then
it 1s applied to fuzzy modeling of distributed data.
This modeling result shows the effectiveness of this
method.

2. Proposed fuzzy inference method

In this paper, the proposed fuzzy inference method
is explained by means of n fuzzy rules, m inputs and
one outpul:

R::

1

IF xyis A;y and ---and x,, is A,
THEN yisB; (i=1,...,n),
where xj.....x,, are input variables and y is an
output variable. A;q,..., A;y, B; represent fuzzy sets.
The fuzzy sets B; (i=1,...,n) are defined by the
following parameters: r position parameters and s
height parameters. They are expressed in this way:

Bi:{pil*“"Pir’hilr""hi.\"} 1,...,"). (1)
The fuzzy sets B; are characterized by a membership

function f:

Hp ()= f(Pits s Pirs Birs oo B, ¥)

i=L....,m). (2

It is necessary that the consequent parts of all rules are
defined by the same membership function f. The
membership function f is called a definition
membership function.

As an example, a triangular type membership
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function  fA(py, Py, p3.hy,y) which depends on
three position parameters and one height parameter is
shown in Fig. 1.

Hp(y)

1 -

; Falpy p2. 23 b y)
L]

o

0

> ¥
P ] P -

Fig. 1 Example of the definition membership function,
triangular type, B={py, py,p3.h}.

In this method, the fuzzy relation R is defined by
the definition membership function f. The fuzzy
relation membership function depends on r weighted
averages of each position parameter and s weighted
sums of zach height parameter, with compatibility
degrees of membership functions in antecedent parts
for each fuzzy rule as weights. Let the input variables
set be x={x,,...,x,,}, then the fuzzy relation R is
expressed by the following membership function

HR(X,y):
R (X, ¥) = f(P] K)yeey pr (X0, by (%), -0 g (%), Y) AT
3)

Y. wi (%) p
p;(x)=i—=—‘n— (k=1...r),
ZW,'(X)
i=1

n
by (X) =Y w; (x)-hy

i=1

w; (X) =H#A,.j(xj),
j=1

(=1,....s),

where Ha, (x;) are membership functions which
characterize the fuzzy sets in the antecedent part of the
fuzzy rules.

Given the input variables x; (j= I,...,m) by
fuzzy sets Aj as inputs, the output B’ is obtained by

sup-min composition ( e ) of the inputs Aj
(j=1,...,m) and the fuzzy relation K:
B = (A{ x---x A})oR. “4)

Its membership function can be expressed as following:

g (y)= sup li[ K\I#A}’. (xj)]A/,lR(x, )’)} &)
m J=

Xjoonn X

3. Fuzzy inference process

In this section, the fuzzy inference process is
explained for two cases: real numbers input case and
fuzzy sets input case.

3.1 Real numbers input case

Let’s consider that the input value of each variable
xj (j=1,...,m) is a real number xj The real
number xj; is expressed by a singleton type
membership function:

J 6
0 otherwise. ©

1 ifXj=X

#A;(Xj)={

Let the input real numbers be x”={x{,...,x,,}, then
the output B’ is obtained from Eq. (5) as following:

Mg (y)= sup [(j’lll‘A}(xj)}/\#R(X, )’):| )
Xjyeewr Xl \JT

=pur(x’,y)

= F(pL (X )eees py (XN hL (X )y g (X7), Y) AL

B ={pl @) GO (O GOL ®)
where
n
> owi(x) py
px)=E k=10,

Y wi(x)
i=l1

he (x) = wi () hye

i=]

wi(x) = [Taa, ().
j=1

In this case, the inferred conclusion can be obtained
easily. Moreover, the inferred conclusion is
expressed by the definition membership function f, and
its shape doesn’t become complicated. Hence, its
meaning can be easily interpreted.

3.2 Fuzzy sets input case

Let’s consider that the input variables x;
(j=1...,m) take fuzzy sets Aj as input values.

Let the input variables set be x={xy,...,x,}, then
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the membership function pp(x,y) of the fuzzy
relation R will be expressed as following, using
resolution identity:

HR(X,) = Jnax. [a A X Ry (X y)], (9)‘
1 if ye Rg(x)
)= 10
X Ry (x.7) {O otherwise, 19

Rz (0 ={y|ug(x, ) 2} (11

where Rz (x) i1s an o-level set of the membership
function ugp(x,y) at some a (oe(0,1}]).
Xr, (X, y) is a characteristic function of the o-level
set Rz(x). The a-level set Ry (x) depends on the
shape of the definition membership function f and the
input variables x.

The output B’ is obtained as following, using
resolution identity:

py ()= max lanxg )], (12)
ae(0,1]
1 if ye By
’ = ; 13
X By ) {0 otherwise, a3

where Bf is an o-level set of the membership

function pp(y) atsome a (o € (0,1]). 28, () is
a characteristic function of the a-level set By . The
a-level set Bf is defined as following:
m
% ={UR¢7(X) S A g (x) }
" (14)

:{URE(X)IVf» as'u"}(xj)}.

In this case, the process to obtain the inferred
conclusion is more complicated than in the real
numbers input case. However, the inferred
conclusion can be obtained discretely, since it is
defined by a-level sets.

4. Simple example

As a simple example, let’s consider both cases of
real number input and fuzzy set input, by means of the
following two rules:

Ry IF x is “about 10”
Ry IF x is ““about 20”

THEN y is “about 207,
THEN y is “about 307,

where the fuzzy numbers in the rules are defined by
triangular type membership functions shown in Fig. 1
as follows:

“about 10”={ 0, 10, 20, 1},
“about 20”={ 10, 20, 30, 1},
“about 30" ={ 20, 30, 40, 1}.

These membership functions are shown in Fig. 2.

about 20

about 10

about 30

"

0

Xy
0 10 20 30 40

Fig. 2 Membership functions of the fuzzy numbers.

The membership function gp(x,y) that repre-
sents the fuzzy relation R for the two rules is defined
from Eq. (3) as following:

HR (X, ¥)= £(p1 (X), pa(x), pa(x). by (x),3) A1 (15)

wi(x) 10+ wy(x)-20

pi(x) = wi(x)+ wy (x)

* _ W‘(X)'20+ Wz(x)'30
Pa2(x) wi(x)+ wy (x)
p; (x) = wy(x)-30+ wy(x)-40

wi(x) +wy (x)
By (x)=wy(x)- 14wy (x)-1
wi(X) =g (X, wr(0)= iy (2),

where Mg (x), Ha, (x) are membership functions that
characterize the fuzzy numbers “about 107, “about 20”
in the given fuzzy rules. Fig. 3 shows the fuzzy

relation R.
4.1 Real number input case

Let a given input real number be x = 14. It can be
defined as a fuzzy set that is characterized by the
following singleton type membership function:

1 (x=14)

0 (x%14) (16)

ﬂA'(x)z{

—558—



This output can be interpreted as a fuzzy number
“about 24" (Fig. 4 (a)).

4.2 Fuzzy set input case

Let a given input fuzzy set be “about 14”, which is
defined by a triangular type membership function:

“about 147 ={ 10, 14, 18, 1}.

The membership function g(x,y) of fuzzy relation
R is expressed as following, using resolution identity:

Ug(x,y)= max [anRE(x,y)], (19)
a<(0,1}
re—— > 1 if yeR
0 it 20 ) ZRE(X’Y)={ ifye z?(x) (20)
(b) Mamdani’s method, a — b = min(a, b) . 0 otherwise,

Fig. 3 Fuzzy relation R of the two fuzzy rules.
where the a-level set Rz (x) is defined as following:

By sup-min composition, the output B’ can be

obtained as following: Ry (x)= { ¥| ¥ € Riower Rupper } @n
Up (}’)-‘:S"‘P[#A'(x)/\llk(x, _\‘)] " ,.( )
* lower = E:Z—{T—Ma"' p;(x),
=up(14,y) 17) by (x)
= fa(14,24,34, 1. y) pr(X)—p3(x)
wpper = ——a+t (x).
ppe B (%) p3ix
B’ ={14,24,34,1) (18)
Ha(x)
A’
' N
AN
L 1/
14 1 0 10 20 ¥
(a) Real number input case, x=14.
ba(x)
14
101418 ! 0 10 20 30 7 10 24 38 y

(b) Fuzzy set input case, A’=1{10,14,18,1}.
Fig. 4 Fuzzy inference processes using the proposed method.
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Let’s calculate o-level sets Bz at each discrete o-
level: «=0.0%, 0.25, 0.5, 0.75 and 1.0. Firstly, for
0=0.0%, the a-level set Ags+ of the input A" is

A ={ x| xe[100,1801 }. (22)

Therefore, from Eq. (14), the o-level sets B(’T(_)“‘ of the

output B’ comes to be:

B(,)f(‘)* :{URTN (X)l 0o* S g (x) }
={UR(T6+(X)lx€AW)* } (23)
={y|yel100,3801 }.

In the same way, the o-level sets Béﬁ , 353’ Bﬁ

and Big come to be:

Bizs={y|ye135345},

B5s ={y|yel170,3101 },

(24)

Bi7s ={ y| y [205,2751 },

By ={y|yel240,2401 }

From resolution
becomes a triangular

Fig. 5 shows these o-level sets Bz .
identity, the output B’
membership function:

kg (y) = fa(10,24,38,1, y), (25)

B’ =1{10,24,38,1}. (26)
This output B’can be also interpreted as a fuzzy

number “about 24”, but the support interval of the

membership function is wider than in the real number

input case. This means an increase of the fuzziness
(Fig. 4 (b)).
Hp(y)
5
10 A Je;
Y \
\
075 /d_——Q
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/
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A 1 | h
s ! | I PN
0251 S — + —
s ! ! ! oy
s : ; ! PN
00 O . el y
10 17 24 31 38

Fig. 5 Discrete inferred conclusion in the fuzzy set
input case.

5. Fuzzy modeling of distributed data
5.1 Distributed Modeling Data

The proposed fuzzy inference method is applied to
fuzzy modeling of the distributed data as shown in Fig.
6. The modeling data is based on the following non-
linear function, one input and one output, Fig. 7:

x2 (0<x<1). @7

-x (-1€£x<0)
y =
The modeling data follows Gaussian distribution
(average is 0.0, variance is 0.052). This means that
the distribution has an extent of about £0.15.

*  Modeling data
1

&
<9

D2
~J.Z

Fig. 6 Distributed modeling data.

08 -

06 -

04

-1 05 op 05 1D

Fig. 7 Based non-linear function.
5.2 Fuzzy modeling

- The space of the input variable x is divided to nine
fuzzy divisions as shown in Fig. 8, hence the fuzzy
model consists the following nine fuzzy rules:

R; :IF xis A; THEN yis B, (i=1,...

9), (28)

B; ={pi1- pi2s Pi3s Hit) (i=1...9). 29
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Membership functions of the consequent part of the
fuzzy rules are of triangular type (as shown in Fig. 1).
The parameters of the membership functions are
identified from modeling data by using the A-rule
method, although parameters h; (i =1,...,9) are fixed
to 1.0.

Under these conditions, a fuzzy model is made

using a thousand sets of the modeling data. The
modeling result is shown in Fig. 9. Consequently, the
error variance of the fuzzy model was found to be the
almost samec as the variance of the modeling data.
Moreover, 98.4% of the modeling data were included
in the support interval of the fuzzy model output.

From the results, it was found that this fuzzy model
using the method proposed in this paper, could
represent not only the non-linear structure of the
function but also the uncertainness of the distributed
modeling data.

-1.0 05 0.0 0.5 10
Fig. 8 Fuzzy divisions in the antecedent part.

Fig. 9 Modeling result.

6. Conclusion

In this paper, our proposed fuzzy inference method
was explained. The strong point of the proposed
method is that the membership function, which
represents an inferred conclusion fuzzy set, comes to
have a simple shape, thus it can be easily interpreted
qualitatively.

From the results of the fuzzy modeling of a
distributed function, it was found that the fuzzy model
using our proposed method could represent not only
the non-linear structure of the function but also the

uncertainness of the distributed modeling data. If the
fuzzy sets in the consequent part of the fuzzy rules
represent possibility distributions, this fuzzy inference
method will be able to perform as a possibility
distribution model.

The proposed fuzzy inference method is expected
to be effective on a human supervised system, in which
a human being takes any action according to the
interpretation of the inferred conclusion.  Future
works will consider its application for such cases, in
order to confirm its effectiveness.
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