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Abstract

It is well known that a Boolean algebra is one of the most important algebra for engineering. A fuzzy algebra,
which is referred to also as a Kleene algebra, is obtained from a Boolean algebra by replacing the complementary
law in the axioms of a Boolean algebra with the Kleene's law, where the Kleene's law is a weaker condition than the
complementary law. Removal of the Kleene's law from a Kleene algebra gives a De Morgan algebra. In this paper,
we generate lattice structures of the above related algebraic systems having finite elements by using a computer.
From the result, we could find out a hypothesis that the structure excepting for each element name between a Kleene
algebra and a De Morgan algebra is the same from the lattice standpoint.
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1. Introduction

It is well known that a Boolean algebra is one of the
most important algebra for engineering, and the ordinary
set theory and the two-valued logic are models or
interpretation ot a Boolean algebra, respectively.

On the other hand, since L. A. Zadeh introduced the
concept of tuzzy set theory in an attempt Lo treat
ambiguity, an infinite multiple-valued logic, which is
called a tuzzy logic, whose truth value is continuous
between 0 and 1, has been studied. However, many
fuzzy logic have ever been proposed[!l,2] such as a
intuitionistic fuzzy logic, a Lukasiewicz's fuzzy logic,
a Kleene's fuzzy logic, and so on. A fuzzy algebra
discussed in this paper is the algebraic system which is
obtained by abstracting a Zadeh'’s fuzzy set theory or a
Kleene's fuzzy logic. The Zadeh's fuzzy set theory and
the Kleene's fuzzy logic are corresponding to each other
as good as the ordinary set theory and the two-valued
logic, respecrively. Hereafter, the Zadeh's fuzzy set
theory is called the fuzzy set theory and the Kleene's
tuzzy logic is called the Kleene logic for short.

We consider two algebras in this paper. One is a
Kleene's fuzzy algebra[3], which is obtained by
replacing the complementary low in axiom system of a
Boolean algebra with the weaker condition called the
Kleene's low. This algebra is also called a soft algebra[4]
in the field of engineering, a Kleene algebra[5] in the
tield of mathematics. This paper uses a Kleene algebra
as a substitute for a Kleene's tuzzy algebra. The other
isa De Morgan algebra[6] which is obtained by removing
the Kleene's low from the axiom system of a Kleene
algebra (It is also called a quasi-Boolean algebra[7] ).

This paper aims at deriving all the lattice structure
of finite fuzzy algebras and finite De Morgan algebras.

To clarity the structure of a target algebra, it is important
to investigate that if we assume what kind of partially
ordered relations for any given finite set, it forms the
target one. As an typical example, the representation
theorem of a ftinite Boolean algebra whose the number
of elements is 7, that is, the lattice structure of a Boolean
algebra is isomorphic to that of lattice of set called 2",
is well known. However, representation theorems of a
tinite fuzzy algebra and a finite De Morgan algebra
have never been known. Using a computer, the authors
generated all the lattice structure each of which forms a
finite fuzzy algebra and/or a finite De Morgan algebra
for any given poset whose the number of elements is
thirteen or less than. Accordingly, from lattice structure's
point of view, we could find out an interesting result,
which the lattice structure of sets forming a finite fuzzy
algebra and a finite De Morgan algebra are the same
each other. The condition for which there exist fixed
points is one of the typical difference between a fuzzy
algebra and a De Morgan algebra, and has ever been
studied. According to our result, it would be expected
that the above two algebras arc isomorphic to each
other if we remove the name of elements which are
fixed points. This expectation means that we would be
able to develop the representation theorem of a finite
De Morgan algebra by adding the condition tor which
there exist fixed points o that of a finite fuzzy algebra.

2. Preliminaries

Let a, b, ¢ be any elements of a non-empty set L.
A lattice (L, v, A) is an algebraic system in which the
two operations v and A are defined on the set L and
which satisfies the following six axioms.
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(1) the commutative law
(ay avb=bva,
(2) the associative law
(a) avibve)=slavb)ve,
My anbacy=(aanb)ac,
(3) the absorption law
(a) avanbhy=a, ®) an(avb)=a.
In particular, it a lattice satisfies
(*) the modular law
az¢c = anbvoe)=(anb)ve,
then it is called a modular lattice. If the modular law is
replaced in a modular lattice with
(4) the distributive law
(ay anbve)=(anbyvianc),
® avibac)=(avbyalavee),
which are strong conditions than the modular law, then
we have a distributive lattice. In a distributive lattice,
if an unary operation N is detined and, in addition, it
satisfies
(5) De Morgan's law
(a) N(avh)= NanNb,
(b) N(aab)= Nav Nb,
(6) the double negation law
N(Na)=a,
then the lattice (L, v, A, N) is said to be a De Morgan
lattice. A DeMorgan algebra[6] is an algebraic system
(L, v, A, N,0,1) which is a De Morgan lattice and has
the least element O and the greatest element 1 satisfying
(7) the least element

by anb=bna,

(a) Ova=a, ® 0Aa=0,
(8) the greatest element
@) lva=1, ®dylaa=a.

A Kleene algebra[3,5] is a De Morgan algebra and,
furthermore, satisfies
(9) Kleene's law
(a) (a ANa)v(bv Nb)y=bv Nb,
(b)) (anNa)ya(bv Nb)y=a A Na.
If we replace the Kleene's law of a Kleene algebra with
stronger conditions
(**) the complementary law
(a) avNa=1, (b)) anNa=0,
then we have a Boolean algebra.

In an algebraic system, many equalities are valid.
Among these equalities, some are derived from others,
that is, they are not independent of each other. Here,
the following problem arises: which equalities can we
adopt as axioms from which all remaining equalities
are derivable? A set of axioms from which all valid
equalities in the algebraic system are derived is called
a complete set of axioms for the algebraic system.
Furthermore, if the axioms are independent of each
other, that is, each axiom can not be derived from others,
then the set of axioms is said to be independent. In
case of examining whether any given finite set satisfies
the algebraic system, it is sufficient to examine the
complete and independent axioms for the algebraic
system. As for the equalities from (1) to (9) mentioned

above, the axioms shown in the first half of the tollowing
definition 1 are a set of complete and independent axioms
for a Kleene algebra[3], and furthermore, the axioms
shown in the latter half are a set of complete and
independent axioms for a De Morgan algebra[3].
[Definition 1] The six axioms from (K1) to (K6)
mentioned below represent one example of complete
and independent axioms tor a Kleene algebra.
(K1) the commutative law
(@) avb=hbva,
(K2) the distributive law
(a) antbvey=(@anbyvianc),
(K3) De Morgan's law
(ay Nav D)= Nan ND,
(K4) the double negation law
N(Na)=a,
(K5) the least element
() Ova=ua,
(K6) Kleene's law
(@) (anNayv((bv Nby=bv Nb.
It the axiom (K6) in the above is replaced with
(D6) the least element
b) OAna=0,
then the six axioms which satisfy from (K1) to (K5)
and (D6) represent one example of complete and
independent axioms for a De Morgan algebra. U
Using the complete and independent axioms of an
algebraic system in this paper is effective for the
tollowing reasons: we can clarify the structure of
algebraic system by examining the role of each axioms,
and we can know whether any given model satisfies
the algebraic system by simply examining each axioms.

3. Generation of finite algebra

The enumeration of finite lattices having n elements
has been reported in the case of # <11 by Tamura and
Tanaka[8], whose method is the first one as far as we
know for generating finite lattices constructively by
using a computer. It is necessary to derive the finite
lattice before to generate any finite algebra in this paper.
On this subject, we adopt the method proposed by
Tamura and Tanaka[8], which is as follows.

Let P be a set of n elements, which is denoted by
P={p..p;.,---,p,}. Since any finite lattice always
contains the greatest element and the least element, we
can decide previously p; as the greatest element and
P, as the least element respectively. To describe a
partially ordered relation between any two elements p;
and p; (where, 1</, j<n)in P, the nxn matrix
which is denoted by R = (r,j) is defined as follows.

1 ( Pi2Ppj, where p; # Pj )
rp=9-1 (PiSPj. where pi #Dj)
0 ( the other )
This matrix is called the relationship matrix for P in
this paper. By means of a proper permutation among
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the elements py, pp,---, p, in P, the elements 7; of a
matrix R= (r,-j), which are about a half of elements in
R and are shaped a triangle on the upper right from the
diagonal elements of R ( that is, 1 </ holds tor any
element r; ), have made possible to exclude -1 as the
value. On the other hand in this case, the elements r;
which are shaped a triangle on the lower left from the
diagonal clements of R ( that is, { =2 j holds for any
element 7; ) can not take 1 as the value. Furthermore,
since the element p; is determined the greatest element
previously, the relation r; =1 always holds for
2<j<n (naturally, r;; =-1 holds for 2<i<n).
Similarly, since the element p,, is determined the least
element previously, the relation r, =1 always holds
for 1<i<n-1 (naturally, »,;=-1 holds for
1<j<n-1). Then, the relationship matrix R is
represented by the following style.

0 1 - 1N
el 0@ i
= B o1
-1 . -1 ()J

Here, any element of the part denoted as ¢ in R takes
either O or 1, and any clement of the part denoted as
P in R takes either (0 or —1. By the way, in the case
of satisfying the commutative law (a) in a given axioms,
the following two conditions hold;

it ry=1 then ry=-1, and it r; =0 then r;=0.
Namely, if a relation L of o in R takeseither 0 or 1,

then the relation ry; of B in R, which is exchanged
between the row and the column symmetrically for the
relation 7, takes either 0 or —1, respectively. Then,
the relationship matrix R is uniquely determined except
for the part denoted by . Consequently, the relationship
matrix R can be uniquely represented by the binary
representation through the arrangement according to
elements r; of o as follows.
> 23k Hke-1yke
» Rn-DlBm-1) " T n-2)n-1)
For any given finite set P, the set P must at least be a
partially ordered set in order to be a lattice. In the case
of examining whether the set P satisfies a partially
ordered set, the binary representation mentioned above
must be satisfied the following three properties.
reflexive: (pi <p)
antisymmetric: (p; Sp; & p;<p; — pi=pj),
(pispj& pj<pr — PiSpg)
Here, since the binary representation has been made
satisfying both the retlexive property and the
antisymmetric property, it is sutficient to examine only
the transitive property. This is judged as follows.
For i<j<k,if ;=1 and ry =1 hold, then ry =1

23, N2al34, ~

transitive:
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holds ( this condition is the same as follows; if = 1
and ry #1 hold, then ry #1 holds ). Furthermore, in
order to judge the set P to be a lattice, for any two
elements p; and I (where, 7#j) in P, we must
examine whether both p; v p; and p; A p; uniquely
exist as the elements of P. Here, it p; v p; exists,
then p; A p; always exists. Because, if we take Py to
a subset of P such as
Pp={l 1 1<p and I<p;}

then P; is not empty since the least element is included
in £, and the infimum element p; A p; is uniquely
determined as follows.

Vil=pAaAp:
1en, Pi A D

The judgement which p; v p; uniquely exists is as
follows. For any i, j (where, i <j) such as to hold
L =0, let Py Puy -+ Py, b€ the upper bounds of
{pi»p;} in P. If it may take a number m to be the
maximum one among the subscripts #y,u5,---, 4, then
the element Py, » which satisfies p, = p,, for any
where 1 <7<k holds, can be uniquely determined as
the supremum element p; v p;.

The judging method for a finite lattice is as mentioned
above, then all finite lattices each of which has both
the greatest element and the least element can be
generated by the binary representations. In reference
[8], the binary representation, which is obtained as the
minimum one by permuting cach other among the
clements po,---, p,_; in P, is called the expression for
a finite lattice, and is designed that it may avoid the
duplication among some finite lattices which are
isomorphic with one another. Table 1| shows the
generating results of several algebraic systems which
ar¢ obtained in this paper, such as a tinite lattice (Lat,

Table 1  The number of several algebraic systems
(where, the notation » indicates the number of elements)
n [Lat Mod D M K B
3 1 1 1 1 1 -

4 2 2 2 2 2 1

5 5 4 3 1 1
6 15 8 5 3 3
7 53 16 8 2 2 -
3 222 34 15 6 6 1
b) 1078 72 26 4 4
10 | 5994 157 47 10 10
11| 37622 343 82 6 6

whose notation in the parenthesis denotes a target
algebraic system in the table 1, and the notations
mentioned below are in the same way), a tinite modular
lattice (Mod), a finite distributive lattice (1), where
these finite lattices have always the greatest element
and the least clement, and turthermore, a finite De



Morgan algebra (M), a finite Kleene algebra (K) and a
finite Boolean algebra (B), respectively. This table is
obtained by both using the method proposed by Tamura
and Tanaka[8] and individually increasing the axioms
described in section 2.

The binary representations, each of which is obtained
as a finite modular lattice (Mod) having n elements
where 7 < 8 holds, are as follows.

Number of elements = 3 Number of elements = 4

No. 1 D.M, K No. 1 0 D.MKB
No. 2 1 DMK
Number of elements = 5 Number of elements = 6
No. 1 0,00 No. 1 0, 00, 000
No. 2 0,11 D No. 2 0,00,111
No. 3 1,10 D No. 3 0.01.110 D,M, K
No. 4 1.11 D.M.K No. 4 0.11.111 D.
No. 5 1,10,100
No. 6 1.10,111 D/, M K
No. 7 1,11,110 D
No. 8 1.11,111 D.M,K

Number of elements = 7

No. 0, 00. 000. 0000
No. 0,00,000. 1111
No. 0, 00,001, 1110

0,00, 111, 1111
0,01, 010, 1100
0,01,110, 1111 D

0,11, 111,1110 D, M,K
0,11, 111, 1111 D

1. 10, 100, 1000
No. 10 1.10.100, 1111
No. 11 1, 10,101, 1110
No. 12 1,10,111, 1111
No. 13 1.11,110, 1100
No.14 1.11.110,1111 D
No. 15 1. 11 111, 1110 D
No. 16 1,11, 111.1111 D,

Z
<
o e N T N

Z
<
o)

(wllw)

M. K

Number of elements = 8
No. 1 0, 00, 000, 0000, 00000
2 0,00, 000, 0000, 11111
No. 3 0, 00, 000, 0001, 11110
4 0,00,000, 1111, 11111
No. 5 0.00,001, 0010,11100
6 0,00,001,1110, 11111
7 0,00,011, 1010, 11000 D. M,
8 0,00, 111,1111,11110
No. 9 0,00, 111, 1111, 11111
No. 10 0, 01, 010, 0100, 11000
No. 11 0,01,010, 1100, 11111
No. 12 0,01, 011, 1100, 11101
No. 13 0,01, 110,1101. 11110
No. 14 0,01, 110, 1111, 11111
No. 15 0,11,111,1110, 11100
No.16 0, 11,111,1110,11111 D
No. 17 0,11, 111, 1111,11110 D, M, K
No. 18 0,11, 111,1111,11111 D
No. 19 1,10, 100, 1000, 10000
No. 20 1,10, 100, 1000, 11111
No. 21 1,10,100, 1001.11110

I
|

Too
I=
I =
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No.22 1,10,100, 1111, 11111
No.23 1,10, 101, 1010, 11100
No.24 1,10,101, 1110, 11111
No.25 1,10, 111, 1111, 11110
No.26 1,10, 111, 1111, 11111
No.27 1,11, 110, 1100, 11000
No.28 1.11,110,1100, 11111
No.29 1,11,110,1101, 11110 D
No.30 1,11, 110, 1111, 11111 D,
No.31 1,11.111. 1110, 11100

No.32 1,11,111,1110, 11111 D
No.33 1,11, 111, 1111, 11110 D
No.34 1,11, 111, 1111, 11111 D, M, K

co o
I
| =

As for the binary representations each of which
forms a finite modular lattice (Mod) mentioned above,
the notations such as D, M, K and B indicate that each
one also satisties the axioms of a algebraic system such
as a distributive lattice having the greatest element and
the least element, a De Morgan algebra, a Kleene algebra
and a Boolean algebra, respectively. And the underline
tfor cach notation means that the finite algebra which is
indicated the notation is isomorphic to the corresponding
binary representation as a lattice-ordered set. From
this result, it is expected that the structure between a
tinite Kleene algebra and a finite De Morgan algebra is
the same except for each element name.,

4. Kleene algebra and De Morgan algebra

As it seems that there is a close relation between a
finite Kleene algebra and a finite De Morgan algebra
from the previous section, we investigate on this point.

With regard to a finite Kleene algebra and a finite
De Morgan algebra, some simple properties are
applicable about the operator N as follows. Though
these are trivial, it is necessary to simplify the decision
procedure as mentioned later, The property 1 and the
property 2 as follows are satisfied on both a tinite Kleene
algebra and a finite De Morgan algebra.

[Property 1] It a # b holds, then Na # Nb holds.
(Proof is omitted)

[Property 2] If Na=b holds, then Nb = a holds.
(Proof is omitted)
The next property 3 is satisfied only a finite Kleene
algebra.
[Property 3] If there exists the element such as
Na = a, then it is unique. (Proof is omitted)

As for a finite Kleene algebra, the element such as
Na =a is called the fixed point[3,9,10,11], and it is
uniquely determined if this element exists ( , as to a
finite De Morgan algebra, there exists some fixed points
in general since the property 3 does not hold ). From
the above properties, except for the fixed point, any
element included in either a Kleene algebra or a De
Morgan algebra is symmetrically related to the element
which is negated itselt ( that is, the element which is
performed an operator N ). Then, concerning the



operator N, the following equation holds for any element
p; of P which is denoted in section 2.
Vp; € P (where, 1<i<n); Np; = p,_is-

In the case of deciding whether any given finite set
satisties the target algebraic system, tor example either
a Kleene algebra or a De Morgan algebra, we examine
only a complete and independent axioms for each
algebraic system. Here, if we use the properties as
mentioned above, it is possible to make simply the
decision procedure as follows.

[Procedure 1] (tor a finite Kleene algebra)
(1) generating the binary representation for a relationship
matrix R,
(2) deciding whether the binary representation obtained
by (1) forms a lattice ( the method proposed by Tamura
and Tanaka|8] ),
(3) examining the distributive law (a) which is
transformed as follows,
N(Nav N(bv¢))
= N(Nav Nb)v N(Nav Nc)
(4) examining the Kleene's law (a) which is transtormed
as follows,
N(Nav a)v(bv Nb)=bv Nb

(5) deciding whether the binary representation which
satisfies the step (3) and the step (4) is isomorphic to
the one which is already recorded as a target algebra (
it it does not exist, then we record this ). [
[Procedure 2] (for a finite De Morgan algebra)
It is the same as that described tor the procedure 1
except for the step (4). ]

According to the procedure 1 and the procedure 2,
we can generate finite Kleene algebras and finite De
Morgan algebras respectively, hoth of which have more
elements compared to the result described in section 2.
The binary representations, each of which forms a finite
Kleene algebra (K) having n elements where n<13
holds, are as follows.

number of elements = 3 number of elements = 4

No. 1 M No. 1 0 M
No. 2 1 M
number of elements =5 number of elements = 6
No. 1 I,11 M No. 1 0.10,110 M
No. 2 1,10, 111 M
No. 3 .11, 111 M

number of elements = 7
No. 1  0,11,111,1110 M
No. 2 1,11, 111,1111 M

number of elements = §

No. 1 0,00, 110, 1010,01100 M
No. 2 0,01.110,1111,01100 M
No. 3 0,11, 111, 1111, 11110 M
No. 4 1,10, 110, 1110, 11111 M
No. 5 1.11,110,1111, 11111 M
No. 6 1,11,111,1111. 11111 M

number of elements =9
No. 1 0,011,110, 1000, 11011,111100 M
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No.
No.
No.

2
3
4

0,11, 111, 1111, 11111, 111110 M

1,10, 111, 1111. 11110,
111, 118, 111, 11111,

number of elements = 10

No.
No.
No.
No.
No.
No.
No.
No.
No.

No

t

[* RN e N (I AT  S )

9
.10

0.01,011, 1100, 11101,
0,01, 110, 1111, 11010,
0,11, 111, 1110, 11111,
O 11, 111, 1111, 11111,
1,10, 100, 1110, 11010,
1.10. 101, 1110, 11111,
1,10, 111, 1111, 11111,
1,11, 110, 1110, 11110,
I, 11,111, 1110, 11111,
L1, 111, 1111, 1111,

number of elements = 11

No.

No.

No.

No.

No.

No.

1

0,01, 110, 1111, 11111,
11111100
0,11, 111, 1111, 11111,
11111110
1,10, 101, 1110, 11000,
11111111
1,10, 111, 1111, 11111,
11111111
1,11, 110, 1111, 11111,
111111
1L 1L, 1110, 1111,
11111111

number of elements = 12

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

1

2

11

12

13

14

15

16

17

0,00, 001, 0110, 10100,
10110100, 011110000
0.01. 010, 0111, 11000,
11111111, 011110000
0,01, 011, 0111, 11000,
11111111, 011110000
0,01.011, 1100, 11101.
11101111, 111111000
0,01, 110, 1101, 11110,
11111111, 111111100
0,01, 110, 1111, 11111,
11111111, 111111100
0.11.111. 1110, 11110,
1111111, 111111110
0,14 111 1111, 11110,
PITHETLL, 111111110
0,11, 111, 1111, 11111,
11111111, 111111110
1. 10, 101, 1011, 11100,
10111000, 111111111
1,10, 101, 1110, 11111,
11111100, 111111111
1,10, 111, 1111, 11110,
TIT11110, 111111111
[.10, 111, 1111, 11111,
LITLEI10, 111111111
111,110, 1100, 11110,
TIITELED, 3HITiLDL
1, 11, 110, 1101, 11110,
PITTIERL, 1T HITLILE
I, 11110, 1111, 1T HI,
TEEILILE, 11111111
1, 11,111, 1110, 11110,

111111
111111

111111,
11,
111111,
111111,
101100,
101100,
111110,
111111,
111111,
111111,

111110,

111111,

111011,

111111,

111110,

11111,

110000,

111001,

111001,

100000,

111111,

111111,

111110,

T11EL,

111111,

111101,

111010,

111111,

111111,

111010,

111111,

111111,

111110,

M
M

0111000
1111100
1111110
1111110
1111111
1111111
1111111
1111111
1111111
1111111

1111111,

1111111,

1111100,

1111110,

1111111,

1111111,

1110111,

1101010,

1111011,

1100101,

1101100,

1111110,

1111111,

1111111,

1111111,

111111,

111111,

1111111,

1111111,

1101100,

1101100,

1111110,

1111111,
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11111111, ti1111111 M
No. 18 1,11, 111, 1111, 11110, 111111, 1111111,
11111110, 131181111 M
No. 19 1,11, 111, (1L, 1t 1L, 111l
11111111, 11111111} M
number of elements = 13
No. 1 0,01,011,1100, 11101, 111111, 1100100,
11101101, 111111111, 1111111000 M
No. 2 0,01, 110, 1111, 11001, 11111y, t1ettn,
11111110, 111111111, 1111111100 M
No. 3 O, 11,111, 1110, I1111, 111111, 1111110,
TITTIL1T, L1101, 1111111110 M
No. 4 O, 11, 111, 1111 113t ettt tietnnl.
TLITIILT. I 0L LI, LhET1I1eo M
No. 5 1.10, 101, 1110, 120, YR RL, 1111130,
PITTRL0L, 111211100, 111it1L111 M
No. 6 1,10, 111, 1EY 1, RL0LL, 11t 1iten,
TT111110, 111111110, 1111111111 M
No. 7 1,11, 110, 1101, 11110, 111000, 1111011,
11111100, 1113811 0L, T1LL11111] M
No. 8 1,11, 110, 111, LI, 1L, 111111,
THITET10, L 11, 1111ittll M
No. 9 1,11, 111, 1110, 11111, 111111, 1111110,
L1f1111L, 1011111y, 11ttt M
No. 10 1,11, 111, 1111, 1100, 10d1t, PILInIL,
11111111, 111111111, 11111111l M

As for the above binary representations each of
which satisties a finite Kleene algebra (K), the notation
M indicates a finite De Morgan algebra which is uniquely
determined the naming tor a element. On the other
hand, concerning the naming for a element, the underline
for notation M indicates that there always exist some
tinite De Morgan algebras each of which isisomorphic
to the Kleene algebra denoted by a binary representation.
From the point of view on a lattice-ordered set except
for each element name, it is seem that a finite Kleene
algebra and a finite De Morgan algebra are isomorphic
to each other. Furthermore, it would be expected that a
finite Kleene algebra can be uniquely determined by
the binary representation itselt (namely, the naming for
a clement in a target algebra is unique ), and a tinite De
Morgan algebra is not always uniquely determined by
the same binary representation as a finite Kleene algebra.
The reason is that the condition for which a fixed point
exists is not uniquely determined in a De Morgan algebra
(thereby, some fixed points exist in general).

5. Conclusion

Nakajima and Morioka[l10] have been studied a De
Morgan algebra by using a concept called the fixed
core which extends the tixed point. And, they proposed
two important facts that the fixed core which does not
reduce the fixed point forms a Boolean algebra, and a
De Morgan algebra which has a unique fixed core forms
a Kleene algebra. From our results mentioned above,
each of which has n elements where n <13 holds, it is
scem that the following facts hold: Any finitc De Morgan
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algebra which is isomorphic to the another one always
includes a Boolean algebra as a subset of the lattice-
ordered set, and if it does not include, then the finite
De Morgan algebra forms the same structure as a finite
Kleene algebra from the lattice standpoint. These facts
have not been proved as far as we know, proving the
hypotheses are left unsettled.
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