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Abstract

In this paper, an LP problem with convex polyhedral objective coeflicients is treated. In the problem,
the interactivities of the uncertain objective coeflicients are represented by a bounded convex polyhedron
(a convex polytope). We develop a computation algorithm of a maximin achievement rate solution. To
solve the problem, first, we introduce the relaxation procedure. In the algorithm, a sub-problem, a bilevel
programming problem, should be solved. To solve the sub-problem, we develop a solution method based
on a branch and bound method. As a result, it is shown that the problem can be solved by the repeti-

tional use of the simplex method.

Keywords: Possibilistic programming, maximin problem, relaxation procedure, bilevel programming,

branch and bound method

1. Introduction

In linear programming (LP) problems with
uncertain objective coeflicients, robust solutions
which minimize the worst deviation from the op-
timal value have been discussed (see[1][2]). E-
specially for interval objective coefficients, solu-
tion algorithms for the minimax regret solution (1]
and for the maximin achievement rate solution {2]
have been proposed. Those algorithms utilize the
non-interactivities of the uncertain objective coef-
ficients as the traditional fuzzy and interval pro-
gramming techniques have utilized. The interac-
tivities among uncertain objective coefficients have
not yet been investigated considerably.

In this paper, an LP problem with convex poly-
hedral objective coefficients is treated. In the prob-
lem, the interactivities of the uncertain objective
coefficients are represented by a bounded convex
polyhedron (a convex polytope). After a review
of the traditional approach to the LP problem, an
example which makes the approach controversial
is presented. The most reasonable solution set,
which is called a necessarily optimal solution set,
to the LP problem is described. Since the neces-
sarily optimal solution set is empty in many cas-
es, the maximin achievement rate solution is in-
troduced as a solution which minimizes a devia-
tion from the necessary optimality. A computation
method of a maximin achievement rate solution is
discussed. The maximin achievement rate problem
is a maximin problem and a relaxation procedure
is applied. The difficulty still remains in solving
the sub-problem, which is a bilevel programming

problem. To tackle this sub-problem, an equivalent
problem is shown and a branch and bound method
is applied. As the result, it is shown that a max-
imin achievement rate solution can be obtained by
the repetitional use of the simplex method.

2. Problem and the best solution

The following LP problem with uncertain ob-
jective coefficients is treated in this paper.

maximize ~Tzx, M

sub.to z € X ={x| Az =b, = > 0},

where A is an m xn matrix, = (z,Zg,..., Zn)’,
Y= (", ¥)T and b = (b, ba, ..., bm)T. ¥
is not known precisely but the possible range is
given as the following non-empty bounded convex
polyhedron T':

ea)t | De< g}, (2)

where D is a pxn matrix and g = (g1, 92,---,9p) " -
We assume that X is bounded and for any ¢ € T,
maxXpex Tz >0

In such an LP problem with uncertain objec-
tive coefficients, the objective function value of a
feasible solution = cannot be obtained exactly but
the range is obtained as an interval,

I'={c=(e,ca,-.

mine'z, maxc x| . (3)
cer cer
Since the interval objective function value with the
maximal lower and upper bounds is preferable, (1)
has often treated by a biobjective programming
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Fig. 1 An example

problem (see [3] [4]),

maximize minelz,

cer

maxc'z, (4)
cer

sub. to x € X.

maximize

A completely optimal solution to (4), which max-
imizes the both objective functions at the same
time, has been regarded as the best solution.

However, as exemplified in Example 1, a com-
plete optimal solution is not always the best solu-
tion.

Example 1. Let us consider the following LP
problem with convex polyhedral objective coeffi-
cients:
maximize vy1z1 + y2Z2,
T+ a0 <12,
3z + 20 < 24,

OSZ'QSQ, 13120,

sub. to

where v = (71,72)" is restricted by
I'={(c1,2)T | Ter —5c2 <4, €3 < 2,
— 3(31 -+ 502 Z 2, C1 2 1} (6)

For every ¢ € T, we have (1,1)T < ¢ < (2,2)T,
(1,DT e T and (2,2)T € T. Thus, the biobjective
programming problem becomes

maximize z; + To,
maximize 2z; + 2z, (N
sub.to x = (z1,25)T € X.

This problem has a completely optimal solution
z* = (6,6)T. .

The solution is illustrated in Fig. 1. The shaded
area of Fig. 1 is the set of ¢ € T' which makes

(6,6)T optimal. Despite the complete optimality,
this shaded area is small relatively to I'. From this
point of view, (6,6)T is not necessarily the best
solution. |

As exemplified by Example 1, a completely op-
timal solution to (4) is not always the best solu-
tion. The best solution should be included in the
following set:

NS = (] S(e), (8)

cer
where S(¢) is defined by

T T
S(c)—{yEX‘cy—glg(cc } (9
NS is called ‘a necessarily optimal solution set’
(see[5]). An element of NS is a solution which is
optimal for all c € T".

In many cases, NS is empty. A solution which
is a necessarily optimal solution when NS is non-
empty, and otherwise, which minimizes a deviation
from the necessary optimality must be preferable.
As such solutions, a minimax regret solution [1]
and a maximin achievement rate solution [2] are
proposed. In this paper, a solution algorithm of a
maximin achievement rate solution is discussed.

3. Maximin achievement rate solution
3.1. Solution concept

Assume we know the true objective function
coefficient vector ¢ after the determination of the
solution of (1) as . Under this assumption, the
ratio of the obtained objective function value cTa
to the optimal value is given by

CTZIB

(10)

ra(z,c) = ————.
maxc y
Yyex
From the assumption of (1), we have ra(z,¢) < 1.
Thus, the larger ra(x, ¢) is, the better the solution
is. We can regard ra(x, ¢) as the achievement rate.
At the decision stage, ¢ is unknown. The worst
(minimum) achievement rate can be defined by

Ra(z) = Icnel{“l ra(z,c). (11)

Thus, (1) can be formulated as a maximization
problem of Ra(x), i.e.,

oz
maximize min ————. (12)
rex cell maxce Yy
Yex

The solution to this problem called ‘a maximin
achievement rate solution’.

When the optimal value of (12) is 1, a maximin
achievement rate solution is a necessarily optimal
solution, and otherwise, a maximin achievemen-
t rate solution minimizes the deviation from the
necessary optimality defined by 1 — Ra(x).
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3.2. Relaxation approach

Since (12) is a maximin problem, we can apply
a relaxation procedure (see[6]). Introducing the
relaxation procedure, the solution to (12) can be
obtained by the following algorithm with an ad-
missible error € > 0.

[Algorithm 1]
Step 1 Obtain a feasible solution z° € X. Set
k=1and r% =1.
Step 2 Solve the sub-problem to obtain Ra(x®).
Let (c*, y*) be an optimal solution.

Step 3 If Ra(z®) > r° — ¢, then terminate. In
this case, 20 is the solution with admissible error
¢ and r% is the minimum achievement.

Step 4 Solve an LP problem,
maximize 7

sub. to Az =b, = >0, (13)
T
(c.)T‘”. >r j=1,2,... k.
(/) y’
Update (z, %) with an optimal solution to (13).
k =k + 1. Return to Step 2.

Since X is a closed bounded set, this algorithm
terminates in a finite iterations.

There still exists a difficulty to solve the sub-
problem at Step 2. In what follows, we discuss a
solution algorithm for the sub-problem.

3.3. Solving the sub-problem

The sub-problem can be rewritten as,

.. clzd
minimize ,
c,y cTy
sub.to Dec<g, Ay=5b, y >0, (14)
cTy = max cTz,

sub.to Az =b, z>0.

This kind of problem is famous as a bilevel pro-
gramming problem or a Stackelberg problem (see
[7]). Scme solution algorithms have been pro-
posed to solve a bilevel programming problem un-
der some assumptions such as the convexity, the d-
ifferentiability and so forth. However, unfortunate-
ly, (14) does not satisfy those assumptions because
of the non-convexity of the objective function. We
propose a solution method for (14).

Applying the optimality condition of an LP
problem (see, for example, [8]), (14) becomes

cTaf

?
bTu

sub. to De<g, bTu=cTy, ATu>c¢, (
Ay=>b, y > 0.

minimize
¢y, u

15)

Introducing a slack variable vector s = (s, 82,...,
5,)T > 0 such that ATu — s = ¢, erasing ¢ and
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changing the objective function to its deviation
from 1, (15) is reduced to

o sT 0
maximize ,
Yy, u, s bTu
sub. to DATu - Ds < g, Ay = b, (16)

y>0,8>0, sTy =0.

For ensuring the boundedness of the relaxed
problems of (16), we add the following redundant
constraint:

bTu < (cR)Ty, (17)

where c® > ¢, for all ¢ € T. For example, ¢} =

(e, R, .. )T can be obtained by
cf‘:rggi)‘cci, 1=12,...,n. (18)

The redundancy of (17) is guaranteed by the du-
ality theorem of LP (see, for example,[9]) and the
non-negativity of y. Thus, we consider a problem,

sTx0
maximize ,
O bTu
sub. to DATu — Ds <g, Ay =b,
bTu < (c)Ty,

¥y>0,8>0, sTy=0.

(19)

Consider the following problem:

maximize wTz?,
U, 8

’

sub. to DATv — Dw < gt,
Ag=bt, ¢ >0, (20)
blo=1, w>0,t>0,
(c®)Tg > 1, w'q =0,
We have the following theorem.

Theorem 1 Problem (20) is bounded. Let
(g*,v*, w*,t*) be the optimal solution to (20). We
have t* > 0 and a solution (y*,u*,s*) is an opti-
meal solution to (19), where
* q * * w*

v uw =g siEg (21)
Conversely, let (y,u, 8) be the optimal solution to
(19). A solution (§,9,%,1) is an optimal solution
to (20), where

=gt, © =4ut, w = 3. (22)

Theorem 1 means that solving (19) is equiv-
alent with solving (20). Therefore, we discuss a
solution algorithm for (19) through solving (20).

From the non-negativities of w and y, the last
complementary constraint wTq = 0 is equivalent
tow;g; =0, 7 =1,2,...,n. If we erase the last
constraint wTy = 0 from (20), the relaxed problem
becomes an LP problem. The LP problem is called
(RP) in what follows. Thus, applying a branch and



bound method, (14) can be solved.

Before describing the concrete algorithm, we
show a theorem which enhances the lower bound
estimation in the branch and bound procedure.

Theorem 2 Problem (RP) is bounded. Let
(q,v,w, t) be a feasible solution of (RP). We have
t > 0 and there ezists a feasible solution (§,¥,w,f)
of (20) whose objective function value is not less

than (wTz’t — wTq)/(t — wTq), i.e.,
0r
t —
wlz® > w (23)
t—wTq

Based on the above discussion, Step 2 of Algo-
rithm 1 can be done by the following algorithm.

[Algorithm 2]

Step1 Set 7 = —oc and P = (). Let (g*,v*,
w*,t*) be an optimal solution to (RP).

Step 2 If (w*)Tq* = 0, then terminate with let-

ting
Ra(z®) =1 — (w*)T2",
Tay* __ *

cf = A—U_"i’__, and
t*

k_ 4

-

Step 3 Select j such that wiq; > 0. Generate
an LP problem (P;) by adding w; = 0 to (RP)
and an LP problem (P,) by adding ¢; = 0 to
(RP). Update P by P = PU{(P1),(P2)}.

Step 4 If P = (}, then terminate with letting

q

Ra(z®) =1-7,
ATd — 4
c’“:—tT—ui and
k4
y ==

Step 5 Select a problem (P) from P and set P =
P — {(P)}. By a post-optimization technique,
solve (P) and let (¢*,v*, w*, t*) be an optimal
solution.

Step 6 If (w

Step 7 If

“YTz® < 7, then return to Step 4.

(w*)Tth* _ (w*)Tq* _
t* — (’UJ*)Tq*

then set

w*
q=q*, v=v" and w = w
Step 4. Here,
(w*)T.’BOt* _ (w*)Tq
~w)Tq
is a lower bound value of 1 — Ra(x?).

Step 8 Select j such that wig; > 0. Generate an
LP problem (P,) by adding a constraint w; = 0

*

to (P) and an LP problem (P3) by adding a
constraint g; = 0 to (P). Update P by P =
PuU{(P1),(P2)} and return to Step 4.

4. A numerical example

In order to explain the procedure of the pro-
posed solution algorithm, let us solve the LP prob-
lem with convex polyhedral objective coefficients
(5) in Example 1. The problem can be rewritten
as

maximize y;x; + Y2I2
+ 73T3 + Va4 + Y525,
sub. to z; + zs + 23 = 12,

3zy + o + x4 = 24,

(24)

To + Ty = 9,
Z1, T2, T3, T4, Ts Z 0.

The associated I' can be written as
L ={(c1,¢2,0,0,0)" | Tey — 5e2 < 4, e <2,
- 3(31 +502 2 2, C1 2 1} (25)
By a simple computation, we obtain ¢® =
(2,2,0,0,0)™. Solving a linear programming prob-
lem,

maximize 27 + 2x2
sub. to z; + x5 + 23 = 12,
3z + 29 + x4 = 24, (26)
Ty + 5 =9,

Zi, T2, T3, T4, T5 Zoa

we obtain a feasible solution z = (6,6,0,0,3)T.
This feasible solution is used as the initial solution
of Algorithm 1.

We applied Algorithm 1 with & = 0.00001. The
computation process of the maximin achievement
rate solution is shown in Fig. 2. The bilevel pro-
gramming problems at Step 2 were solved by Algo-
rithm 2. As shown in Fig. ??7, a maximin achieve-
ment rate solution is obtained after introductions
of {c1,¢2) = (1,2) and (e1,¢9) = (1.5,1.3) which
are two critical extreme points of I' as shown in
Fig. 1. The obtained maximin achievement rate
solution is

(3.6,8.4,0,4.8,0.6)T, (27)

and shown in Fig. 1. As shown in Fig. 1, reflecting
the shape of T, i.e., lack of the right lower part, the
obtained solution is located near an extreme point
(z1,22) = (3,9) rather than (zq,z3) = (6,6).

($1,$2,$3,$4,(E5)T =

5. Conclusion

An LP problem with convex polyhedral objec-
tive coefficients has been treated. A significance
of a maximin achievement rate solution has been
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Step 1 Set initial solution as z° = (6,6,0,
0,3)T. Set k=1 and r° = 1.

Step 2 Solve a bilevel programming prob-
lem (21 LP problems are exam-
ined). Set Ra(xz®) = 0.857143, ¢! =
(1,2,0,0,0)T and y' = (3,9,0,6,0)T.

Step 3 Since Ra(z®) = 0.857143 < r® =1 —
0.00001, continue.

Step 4 Solve an LP problem with 4 con-
straints. The solution is ° = (3,9,
0,6,0)T, and 7 = 1. Reset k¥ =
k + 1 = 2 and return to Step 2.

Step 2 Solve a bilevel programming prob-
lem (19 LP problems are exam-
ined). Set Ra(z®) = 0.964286, ¢® =
(1.5,1.3,0,0,0)T and y* = (6,6,0,0,
3)T.

Step 3 Since Ra(z®) = 0.964286 < r® =1 —
0.00001, continue.

Step 4 Solve an LP problem with 5 con-
straints. The solution is % = (3.6,
84,0,4.8,0.6)T and r° = 0.971429.
Reset ¥ = kK + 1 = 3 and return to
Step 2.

Step 2 Solve a bilevel programming prob-
lem (19 LP problems are examined).
Set Ra(z®) = 0971429, ¢ = (1.5,
1.3,0,0,0)T and ¥® = (6,6,0,0,3)T.

Step 3 Since Ra(z®) = 0.971429 > % =

0.971429 — 0.00001, terminate. The
obtained maximin achievement rate
solution is

($1,$2,$3,$4,$5)T

= (3.6,8.4,0,4.8,0.6)7.

Fig. 2 Computation process

reviewed and a computation method of a maximin
achievement rate solution has been proposed. The
proposed method is based on a relaxation proce-
dure and a branch and bound method. It has been
shown that a maximin achievement rate solution
can be obtained by the repetitional use of simplex
method.

Finally, the achievement approach can be intro-
duced to an LP problem with a convex polyhedral
conic fuzzy vector. A maximin achievement rate
solution can also been defined even in this case.
The computation method of the solution can be
designed based on the proposed algorithms. This
would be a future topic of our research.
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