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Abstract

A systematic design method for PDC(Parallel Distributed Cornpensation)-type continuous time Takagi-Sugeno (T-S in short) fuzzy
control systerns which have inaccessible states is developed in this paper. Reduced-dimensional fuzzy state estirnator is introduced
from existing T-S fuzzy model using the PDC structure of Wang et al. [1]. LMT (Linear Matrix Inequalities) problerms which
represent the stability of the reduced-dimensional fuzzy state estimator are derived. Pole placement constraints idea for each rules
is adopted to determine the estimator gains and they are also revealed as ILMI problems. These LMI problemns are combined with
Joh et al.’s [7) [8] L.MI problems for PDC-type coutinuous time T-$ fuzzy coutroller design to yield a systematic design method
for PDC-type continuous time T-S fuzzy control systems which have inaccessible states.

1 Introduction

Tanaka and Sugeno [2] proposed a theorem ou the stability anal-
ysis of T-S fuzzy model. Wang et al. [1] proposed the so-called
PDC as a design framework and also modified the Tanaka’s sta-
bility theorem to include control. An important observation in
the paper is that the stability problem is a standard feasibility
problem with several L.MIs when the feedback gains are pre-
determined and can be solved nurmerically using an algorithm
named interior-point method. They are, however, NMIs (Non-
linear Matrix Inequalities) when the feedback gains are treated
as unknowns. So, Wang et al.’s method can be considered as
a stability checking method for pre-designed system and needs
trial-and-error for control design.

Joh et al’s [7] [8] converted the NMIs to LMIs for both of
continuous and discrete T-S fuzay controllers by applying the
Schur complements [3, page 7] to the Wang el al’s stability
criterion and named it as stability LMIs. And they proposed
a systematic design method based on the stability LMIs for T-
S fuzzy controllers which guarantees global asymptotic stability
and satisfies desired performance of the closed-loop systern. Tt
was accomplished by including .MTs about pole placement con-
straints to the stability LMTs and solving them numerically. The
desired performance was represented as L.MIs which is a region in
the complex plane where the desired closed-loop poles lie inside
of the desired region [4] [5].

Joh et al.’s [7] [8] work assumned that all the state variables
are accessible. There are, however, many nonlinear systems
which have inaccessible state variables. In this paper, Joh ef
al.’s [7] [8] method is expanded to include those cases. Reduced-
dimeusional fuzzy state estimator is proposed as 7 T-S type fuzzy
rules using Wang et al’s PDC structure to estimate the inac-
cessible states. Their stability LMIs are derived since the fuzzy
state estimator may not be stable even though 7 individual es-
timators are stable. Pole placement coustraint LMIs are derived
for fuzzy state estimator to specify the desired responses. So,
the estimator gains which guarantee stability and desired perfor-
mances can be determined by solving the LMIs sirnultaneously.
A systematic design method for PDC-type fuzzy controllers with
inaccessible states is obtained by combining LMTs for fuzzy state
estimator and LLMTs for control.

2 Background Materials and

Problem Formulations

2.1 T-S Fuzzy Model of Nonlinear Dy-
namic Systems and Its Stability

Takagi and Sugeno [6] proposed an effective way to represent
a fuzzy model of nonlinear dynamic systems. It uses a linear
input-output relation as its consequence of individual plant rule.
A continuous time T-S fuzzy model is composed of 7 plant rules
that can be represented as

if 2,(t) is M{ and --- and z,(t) is M} 1
then £(£) = Aix(t) + Biu(t), i=1,2,-,r 1)

where
T : jth
Mj : fuzzy term set of Tj,

MJ’ : a fuzzy term of Mj selected for plant rule 4,
z(t) : state vector € R™, u(t) : input vector € R™,
A; € I B; € R

state (or linguistic) variable,

For any current state vector Z(t) and input vector u(£), the
T-S fuzzy model infers a:(t) as the output of the fuzzy model as

Doie wi [Aiz(t) + Biu(t)]
Z::lwi

follows:

&(t) = ()

where

w; = [[ Mi(z(8)).

k=1

3)
For a free system (i.e., u(t) = 0), (2) can be written as

D widiz(t)
Elewi .

It is assumed, from now on, a proper continuous T-S fuzzy model

i(t) = 4)

is available.

Tanaka and Sugeno [2] suggested an important criterion for
the stability of the T-S fuzzy model.

Theorem 1. [Stability Criterion for T-S
Fuzzy Model] The equilibrium of the continuous-time T-S
fuzzy mode! (1) (namely, = ) is globally asymptotically sta-
ble if there exists a common symmetric positive definite matrix

-331~—



£ such that
AP+ PA; <Oforalli=1,2,---,r (5)

2.2 PDC-type T-S Fuzzy Control Sys-
tem and Its Stability

Wang et al. [1] proposed a framework which can be used as
a guideline to design a T-5 fuzzy controller using existing T-S
fuzzy model. Tn this case, we can use a proper linear control
wethod for each pair of control rule and plant rule. Wang et al.
[1] named it PDC(Parallel Distributed compensation).

A PDC-type T-S fuzzy controller which uses full state feed-

back is composed of 7 control rules that can be represented as

if 2y (t) is M{ and -+ and ,,(t) is M} ()
then u(t) = K;z(t), i=1,2,---,r.

TFor any current state vector :l:(t), thie T-S fuzzy controller
infers %(t) as the output of the fuzzy controller as follows:

2w Kjz(t)

Tt has very important advantage because it makes easy (or
manageable) to apply (7) to (2). Therefore the closed-loop be-
havior of the T-S fuzzy model (1) with the T-S fuzzy controller
(6) using PDC can be obtained by substituting (7) into (2) as
follows:

u(t) = (7)

2tz Wiw; (Ai + BiK;)x(t)
Z::1Z;=1wiwj

The corresponding sufficient condition for the stability of (8)

#(t) =

(8)

can be easily obtained.

Theorem 2. [Stability Condition for PDC-
type T-S Fuzzy Control System ]| The equilib-
rium of the continuous-time PDC-type T-S fuzzy control system
(namely, T = () is globally asymptotically stable if there exists
a common symmetric positive definite matrix P such that

(Ai + BiK;)"P + P(A; + B;K;) <0 i, =1,2,--+,r
(9)

Tt is suggested that P can be determined numerically by
solving LMIs in (9) when Kj’s, ¢ = 1,2,---,7 are predeter-
mined. Tt should be noted that (9) has 72 LMIs. Wang et al. [1]
rewrote (8) by grouping the same terms and the corresponding
sufficient condition for stability is summarized in the Corollary
1.

Corollary 1. [Less Conservative Stability
Condition for PDC-type T-S Fuzzy Control
System] The equilibrium of the continuous-time PDC-type
T-S fuzzy control system (namely, £ = 0) is globally asymptoti-
cally stable if there exists a common symmetric positive definite
matrix P such that

(“h + BiKi)TP + P(Az + BiK,‘) < (), 1= 1, 2,' T
G;GP+PG,']' <0,i<j<m
(10)

where

_ (A + BiK;) + (4; + B;K;)

Gij = 3 di<gj<r, (11)

The number of LMIs for (10) is r(—r;_—ﬂ Therefore the num-

ber of LMIs to be solved is reduced greatly from r? of (9) to
r(r+1)
——.

2.3 Stability LMIs for State Feedback
Control and Pole Placement Design

It should be emphasized that the stability criterion (10) is [,MTs
if and only if the feedback gains K;’s are predetermined using
proper design wnethod in Wang et al. [1]. Tt is, however, nec-
essary to treat J(;’s and P as matrix variables when we try to
find a systematic control design method which guarantees the
stability criterion (10), i.e., they should be determined simulta-
neously. In that case, the stability criterion (10) is not L.MIs.
Any analytic or numerical method which solves such NMT prob-
lems does not exist yet. Joh et al. [7] [8] converted the NMTs to
LMTs for continuous-time PDC-type T-S fuzzy control systemns
from (10) using the well-known Schur complernents.

Theorem 3. [Stability LMIs for PDC-type
T-8 Fuzzy Control System] The equilibrium of the
continuous-time PDC-type T-S fuzzy system (namely, x = ()
with unknown K;’s is globally asymptotically stable if there ex-
ists a common symmetric positive definite matrix Q = P~1 >
0 which satisfies

QAT + A,Q+VIB + B;V; <0,i=1,2,---,r
QAT + AiQ + QAT + A;Q + V"B + BV
+V'BY + B;V; <0,i<j<r
(12)
where Q and V; = K;Q, 1 = 1,2,---,7 are new matrix
variables of I.MIs.

Stability LLMIs play very important roles in the design of
PDC-type T-S fuzzy control systems since they are able to treat
the feedback gains as unknowns. Tt means they can be used as
bases for invention of systematic design methods of PDC-type
T-S fuzzy control systems.

Chilali and Gahinet [4] [5] proposed that a convex region
which represents the desired closed-loop pole-placement con-
straints can be represented as LLMIs.

Theorem 4. [LMIs for Pole Placement Con-
straints) The closed-loop poles lie in the LMI region

D={zeC|fplz):=L+Mz+M"z2<0} (13)
if and only if there exists a symmetric positive definite matrix
Xpot satisfying

[)\inpol + Hij (A + BK)Xpol + /inXpal (14)
(A +BK) ]i<ij<m <0
Tlere, z is a complex variable, A, B, and K are system, in-
put, and feedback gain matrices of a linear system, respectively,
T _ .. — ..
and L = L' = [/\’J]lii,jSm and M = [“’J]lii,jsm are
known real matrices which can be determined by specifying de-
sired closed-loop pole region in complex plane.
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Toh et al.

suarantees global asywiptotic stability and satisfies desired per-

77 8] proposed a new desipn method which

formances by applying the Chilali and Gahinet’s LMI regions
{1] [5] to each local T-$ fuzzy controller in order to specify the
desired closed-loop performance. 1t means that we have 7 L.MT
regions corresponding to 7 local T'-S fuzzy controller as follows:

M@ + peAiQ + puBiVi + pn QAT
+ e V"B li<ipcm <0, i =1,2,-- .1

(15)
where (2 is used instead of XWI since (J is symnetric positive
definite and IG;Q = V. So, ¥ T.MIs in (15) can be used as
the desired closed-loop pole placement constraints for T-S fuzzy
control systems. Therefore, combination of the stability LMIs

and (15) gives a new design method for T-5 fuzzy controllers.
Theorem 5. [Pole Placement Design of PDC-
type T-S Fuzzy Control System]

time PDC-type T-S fuzzy coutroller which guarantees global

A continuous-

asyrmiptotic stability and satisfies desired performance by placing
closed-loop poles for each local model withiu the desired regiou
can be designed by solving

QAT+ A,Q+ V"Bl + BV, <0,i=12,---,r
QA + 4;Q + QAT + A;Q + V"Bl + BV
+Vi"'B;-r +B;V;<0,i<j<r
M Q + prAiQ + puBiV; + pn QAT +
ulkViTB;I‘}ISk,IS'm <0,i=12,---,r
Q) > al, a = positive constant
(16)
We can obtain ) and V;, ¢ = 1,2, -+, r, by solving (16).
And theu the common symmetric positive definite matrix P
and feedback gains K;, ¢ = 1,2, -, r, can be determined as
follows:

P:Q—lv Ki:‘/iQ_l :I%P,i:1,2,"',r. (17)

2.4 Motivation and Problem Formula-
tions

It is assumed in the previous subsectious that all the state vari-
ables can be measured. There are, however, many cases where
all or some of the state variables can not be measured. We may
be able to overcome this problem by introducing fuzzy state
estitnator under the assumption of observerbility of the conse-
quence part of (1). If the well-known separation property holds,
the gains of the feedback controller and fuzzy state estimator
can be designed separately and systematically using pole place-
ment constraints in the subsection 2.3. This is the motivation
of the research in this paper. So, the problems in this paper can
be defined by proposing the fuzzy state estirmator. The reduced-
dimensional fuzzy state estimator is addressed in this paper.
From now, the state variable &; (t) of the antecedent part of
(1) is substituted by £ (£), the estimate of ;(t), since the inac-
cessible state variables should be estimated for the state feedback
control. .
Proposition 1. [Reduced-dimensional Fuzzy
State Estimator] We assume that some of the state vari-
ables are not accessible. Also, for simplicity, we assurne that the
plant dynamic models of consequence part of (1) have observable

companion form as follows

o] =LA ]

y(t) =z (2)

z1(t)

i ]mo

o] B
B}

(18)
where
y(t) : output state variables,
Z1(t) : accessible state variables,
22(t) : inaccessible state variables.

If the dynamic equation of consequence part in (1) is ob-
servable, a {n — g)-dimensional fuzzy state estimator can be
constructed using the similar structure to PDC to estimate in-
accessible states for each rules. Note that the rank of the output

sth'

matrix is ¢. The 2°" rule of the reduced-dimensional fuzzy state

estimator can be written by as follows

if £(t) is M{ and --- and #,(t) is M}
then 2(t) = Fiz(t) + Giy(t) + Hu(t), i =1,2,---,r
(19)
where
22(t) = 2(t) - Lig(t),
Fy=Asy + LiAly, . .
Gi = —(Ay + LiA},)Li + (A + Lidyy),
H; = Bj + L;Bi.
L; : (n — @) X g real constant observer gain matrix,
Therefore, (19) infers the output of the reduced-dimensional

I

fuzzy state estimator Z(t) as follows:

2i Wi [Fiz(t) + Gay(t) + Hiu(t))

) = S . (20)
where -
wi = [] Mi(8:(®)). (21)
k=1

A PDC-type T-S fuzzy controller which uses feedback of
estimated states is composed of 7 control rules that can be rep-
resented as

if #(t)is M{ and --- and 2,(¢t) is M}
then u(t) = K;2(¢), i =1,2,---,r.

3 Stability LMlIs with Fuzzy
State Estimators

(22)

Theorem 3 which defines stability LMIs play very important
roles for design of T-S fuzzy controllers with state feedback.
Similar expressions are necessary for the case of using the fuzzy
estimators for the design of PDC-type T-S fuzzy controllers with
inaccessible states.

Stability of the T-S fuzzy control system represented as (1),
(19), and (22) can be investigated using the following composite
dynamic equation.

(23)

where
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A ==

S S s (A iIG) YL S was K,

w R

0 Z.‘:lE;‘:lw"w’.Fi

w

(24)
ror

W = ZZwiwj (25)

i=1j=1

Ce(t) = z(t) - Tiz(t), T: =
{i] :[le Q‘z,-].

The corresponding sufficient stability condition for (23) can

[0 In_q J, and

be obtained as follows.

Theorem 6. [Stability LMIs for PDC-type
T-S Fuzzy Control System Using Reduced-
dimensional Fuzzy State Estimator] The equilib-
vium of (23) (namely, £ = ( and e = () is globally asymptoti-
cally stable if there exists a common syminetric positive definite
matrix P such that

AP+ PA<O. (26)

Eq. (26) is a NMI since #(;’s and L;’s are unknowns. It is
equivalent to finding the P > 0 and Q > 0 of the following
two LMIs

AQ+QAT+BV + VBl <0, i,j =1,2,

PAL, + Ab," P+ WiAL, + 45, W <0,
1=1,2,---,r
] (2)
when P is restricted to
5 | AQ7' 0
P= [ 0 p ] (28)

where A is a positive scalar. Tt should be noted that @, P, Vs,
and W,’s are matrix variables and

Vi = K;() and W; = PL; (29)

where K;’s and L;’s are feedback gains and estimator gains,
respectively.

The Theorem 6 can be made less conservative by using the
sirmilar concept in the Corollary | as follows.

Theorem 7.[Less Conservative Stability
LMIs for PDC-type T-S Fuzzy Control System
Using Reduced-dimensional Fuzzy State Esti-
mator] The equilibrium of (23) (namely, £ = ( and e = 0)
is globally asymptotically stable if there exists a common sym-
metric positive definite matrix P and @ such that

A;Q+ QAT + BV, + VBT <0, i=1,2,
A;Q + QAT + A;Q + QAT + B,V; +V’1"BT
+BV+VTB’]<O 'L<]<7‘
PAi, + A, P+ WAL, + AL, WY <0,
1=1,2,
(30)
Remark 1. It should be noted that Theorem 7 reveals
the well-known separation property in the linear systems theory
since V; = K;Q) and W; = PL; are not coupled and can be
desipned separately.

4 Design of T-S Fuzzy Con-
trollers using Fuzzy State Es-
timator

Joh et al. [7] [8] proposed that the Chilali and Gahinet’s LMT
regions [4] [5] for each local T-S fuzzy controller can be com-
bined with the stability L.MIs in order to specify the desired
transient response as shown in the Section 2. The same idea
can be applied to the design of T-S fuzzy controllers which uses
fuzzy state estimators. Tt should be emnphasized that we can
separate the design of feedback gains and estimator gains since
the well-known separation property holds as shown in the Sec-
tion 3. Therefore, we can ake a systematic design wmethod for
PDC-type continuous time T-S fuzzy control system which uses
fuzzy state estimator by adding the pole placermeut design for
the fuzzy state estimator.
each local T-S

Tn here, LMTI regioun corresponding to
fuzzy estimator in (19) is given as the following
theorem.

Theorem 8. [Pole Placement Constraint
LMIs for Fuzzy Estimator] The poles of the reduced-
dimensional fuzzy observer lie in the L.MT region

D={2€C|fo(2) =L*+M*2+M"3 <0} (31)

if and only if there exists a symmetric positive definite matrix
P satisfying

[Ap P+ uk,PA22 + pp Wi Ab, + ,u,kAu

32
+ i AW lichicm <0 (32)

Now, combinations of the stability LMIs and pole placement
constraint LMIs yield new design methods for PDC-type T-§
fuzzy control systems with fuzzy state estimators. They are
summarized in the following theorem.

Theorem 9. [Pole Placement Design of PDC-
type T-S Fuzzy Control System using Reduced-
dimensional Fuzzy State Estimator] Consider a dy-
narnic system some of whose state variables are not accessible.
A continuous-time PDC-type T-S fuzzy controller which guaran-
tees global asymptotic stability and satisfies desired performance
can be designed by solving

AQ+ QAT + BV, +VTBY <0,i=1,2,--,r
AQ+QA"+A Q+QA’ + B;V; +V’B"'+BJ-V£
+VTB' <0,i<j<r
Pu@ + prdiQ + #ktB V + pp QAT
+N!k‘/, Bz ]lsk,lSm < 07 1= 1,2,"',7‘
Q > ol, a = positive constant
(33)

PAb, + Aby P+ WiAl, + AL, WT <0,
[P + pg PAz® + ppy Wil + piyAse' P
+ MTkA’izl W li<ka<m <0, i=1,2,--,r
P > ~I, ~ = positive constant
(34)
where (33) defines the stability and the desired performance of
the whole systern and (34) defines the stability and the desired
performance of the reduced-dimensional fuzzy state estimator.
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5 An Simulated Example

‘T'he proposed design method is verified by designing a coutroller
for an inverted pendulum with a cart which is adopted from
Wang et al. {1]. The equation of motion for the pendulum are

&1 (t) = z2(1)
i (t) _ gsin(z1(t))—amlz2>(¢) sin(2x1(t)) /2—-a cos(x1 (£))u(t)
2 - A/3—amicosZ(z1 (£)) .

(35)

where a7y (t) is the angle(in radians) of the pendulum frow the

verfical, .'l,'-_)(t) is the angular velocity, and ’ll(f.) is the control

force(in Newton) applied to the cart. The other parameters are

as follows:

g : the gravity constant(9.8m/s?),
. ass of the pendulum (2.0 g),
A 2 nass of the cart(8.0K g),

21 : length of the pendulum{1.0m),

S
T omeEM
T'he T-8 fuzzy model in Wang et al. [1] is adopted in this paper.

Tt is composed of two plant rules.

if #y isabout Qthen 2 = A2 + Byu
if & is about £ % (Ii;I < ’21) then & = Ayz + Bou
(36)

I: ; ]
- &
Al/3—aml

where

0 1
41/3—aml

0 1 0
4y = o ] . B = :
? [ w(Al/3—amlf?) ’ - 4!/3—t-lam.w2

and where 3 = c0s(88°). Refer to Wang et al. [1] for detailed
description.  Membership functions of “about 0” and “about

47 are shown in Tig. 1.

about —T/2 about 0 about 1/2
1
Rule 2 Rula 1 Rule 2
[}
-90 0 90 {degq]

Figure 1: Membership functions of “about 0” and
“about %7

Let’s assume that state variable xg(t) is inaccessible. (i.e.,
system output ¥ is Cz and C = [1 0}.) We can construct
reduced-dimensional fuzzy state estimator to estimate Z2(t)
since {Ai,C} in (36) is observable for all ¢. Furthermore, we
can see that the plant dynamic models of consequence part of
(36) are observable companion form. Therefore, the reduced-
dimensional fuzzy state estimator for this example can be writ-

ten as follows
if 4 is about 0 then 2 = Fiz + Gy + H\u

if & is about £ % (|2,] <
then 2z = Fyz + Goy + Hou

(37)

—

where
— 2 —
Gy = _Ll + 4173—aml:| Hy = ~41732aml:|
— 2 2g — g
GL’ - —L‘l + w(Al/3—amif ] H2 - _41/3-‘}umlﬁ ] -

and Fy g = [Ll,g]. The corresponding PDC-type T-S fuzzy

controlier can be represented as

if 2; is about O then v = K&

o s . 38

if & is about =+ (|1:1| < %} thenu = Ko# (38)
and the resulting output of the controller is

u=w K1+ w Kof (39)

since wy + wy = 1 from Tig. 1. Tlere, w; and wy are member-
ship grades of antecedent parts of control rules 1 and 2 respec-
tively.

The design purpose of this example is to place the closed-
loop poles of each local model within the desired region as shown
in Fig. 2 as shaded polygon. It corresponds to restrict damping
and response time within certain range. Since the plant is the
2nd-order system, the response should be

¢ > 0995 and T, < 2.67 (sec). (40)

\\
~

~

TR

~
f
{
1
i
|
{
—— :
SR Sl
|

I

|

I -

|
|
|
i
!
]
v
{
¥
|
i
|
|
I

It
-t

R e S —

1 t 1

Obmerver pole | Closed-loop pole

region ragion

Figure 2: Desired Pole Placement Constraint Region

Therefore, the LMI region for the closed-loop system is defined
by L and M matrix as

3 0 00 1 0 0 0

0 -6 0 0 0 -1 0 0
=10 0o 00 "M 0 0 msy ma
0 0 0 0 0 0 —Mzq4 M33
(41)
where mg3z = 0.0998 and mgq = —0.995. We have to de-

sign the fuzzy state estirator to converge much faster than the
closed-loop systermn. The desired .MI region for the estimator
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poles are shown in the Tigure 2. The corresponding L* and
M matrices are

6 0 0 0

. |0 =700 .

=y 0 0ol M=M
0 0 00

Now, we have to solve 11 LMIs in (33) and (34) since r = 2.
We can obtain the solution as follows

[ 2179 %x10°  -6.153 x 10°
@ = —6.153 x 103 1.795 x 101
Ky =[12607 263 ], K.=[ 27223 8834 ]
P =3.532, Ll,g = 3.407.
(43)

Since the eigen-values of matrix (Q are 63 and 20066, () and
P are obviously symmetric positive definite matrices. There-
fore, the PDC-type T-8 fuzzy controller (38) using the reduced-
dimensional fuzzy state estimator (37) is globally asymptotically
stable. Tt verifies the stability of the proposed design method.

The performance of the proposed controller is checked by
stmulation. The simulation is performed with various initial
conditions to see the performance of controlling nonlinear sys-
tem. Figure 3 show the resulting response of the system for
various initial conditions (i.e., Z1 = 5, 25, 15, 65, 85(deg.), and
To = 0). Also, performance of the proposed controller is com-
pared to linear controller with reduced-dimensional estirmator.
The feedback gain and reduced-dimensional estimator gain se-
lected for linear controller are Ky and L1 respectively. The solid
lines indicate responses with the proposed fuzzy controller and
the dotted lines show those with the linear controller in T'ig. 3.
In Fig. 3, we show that the performance specifications (40) are
satisfied. Therefore, the performance of the proposed method is

verified.
e s e )
w \
}
70 \
L
601\ \
\ kY
Voo
soF \ 1
‘g o \\
;40 \\ \
A
W 4
H ; K !
b :
20 o i
10! ~
~. -~
NI T |
i e e T T e . ;
0 - e ATTT
0 [ ] 1 1.5 2 25 3
Time(sec)

Figure 3: Position responses using linear and proposed
fuzzy control

6 Concluding Remarks

A uew design method for the continuous time T-$ fuzzy con-
troller with fuzzy estimators is proposed. The method uses LMT
approach to find the common symmetric positive definite matri-
ces () and P and feedback gains , and estimator gains numer-
ically. As the results of the stability analysis for the cornposite
system, we can see that the separation principle between con-
troller and estirnator is satisfied. Therefore, it is possible to solve
each stability T.MTs for the closed-loop system and estimator. By
solving stability T.MTIs and pole placement constraint T.MIs for
each closed-loop fuzzy systemn and fuzzy estimator simultane-
ously, the feedback gains and estimator gains which guarantee
global stability and satisfy desired performance can be deter-

mined.
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