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Abstract

There have been several recent studies concerning the stability of fuzzy control systems and the syn-
thesis of stabilizing fuzzy controllers. This paper reports on a related study of the TS {Takagi-Sugeno)
fuzzy systems, and it is shown that the controller synthesis problems for the nonlinear systems described
by the TS fuzzy model can be reduced to convex problems involving LMIs (linear matrix inequalities).
After classifying the TS fuzzy systems into two families based on how diverse their input matrices
are, different controller synthesis procedure is given for each of these families. A numerical example is
presented to illustrate the synthesis procedures developed in this paper.
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1. Introduction

In the TS fuzzy model [4], the overall system is de-
scribed by fuzzy IF-THEN rules, each of which repre-
sents local linear state equation X = A;x -+ B;u in a
different state space region. In this paper, we are con-
cerned with stabilizing the nonlinear systems described
by the TS fuzzy model with the TS fuzzy controllers
or a modified version of the TS fuzzy controller. For
clear and convenient presentation of our results, we
classify the TS fuzzy systems into two families based
on how diverse their input matrices B; are, and differ-
ent controller synthesis procedure is developed for each
of these families. First, the family of the TS fuzzy sys-
tems with the common input matrices is considered,
and it is observed that the TS fuzzy controllers which
stabilize the systems in the family can be found by
solving a simple set of LMIs (linear matrix inequal-
ities). Next, the complement set of the first family
is considered, and a new fuzzy controller is proposed
for the stabilization of the family. The control signal
of the proposed controller is produced by postfiltering
the output of the TS fuzzy control. A stabilizability
criterion for the proposed fuzzy controller is given in
terms of LMIs. Also, it is shown that to find the pa-
rameters of the new fuzzy controller can be cast as an
LMI problem.

Formulation of the controller synthesis problems
with LMIs is of great practical value because they can
be solved by reliable and efficient convex optimization
techniques [2], e.g. the LMI Control Toolbox for use
with Matlab [3].

This paper is organized as follows: Section 11
gives preliminaries regarding Takagi-Sugeno fuzzy
model, quadratic stability and linear matrix inequal-
ities. The fuzzy controller synthesis problems are
formally stated and solved in Section III. In Section
IV, a numerical example is presented to illustrate the
controller synthesis procedures proposed in this paper.
Finally, concluding remarks are given in Section V.

2. Preliminaries: TS fuzzy model, Quadratic
stability and LMIs

The focus of this paper is on the design of stabiliz-
ing fuzzy controllers for nonlinear systems described by
the TS fuzzy model. The general element of [F-THEN
implications of the TS fuzzy model is given in the fol-
lowing form:

Plant Rule 1:
IF z1(t) is M; and -+ - and z,(t) is M;,,

THEN

x(1) = A;x(t) + Bu(t). (1)
i=1,---,7.
Here, z;(t) and My, ¢ = 1,---,r, j = 1,---,g are

premise variables and fuzzy sets, respectively, and »
is the number of IF-THEN rules. Following the usual
inference method of the TS fuzzy model, we obtain the
state equation of the overall system represented in the
form of weighted average along the trajectories z(f):

2 wi(z()){Ax(t) + Bau(t)}
3 i wilz(1)) ’

x(t) = (2)
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where u(t) € R, x(t) € R” and =(t) € R9. In the
equation (2), the weight functions are defined as

g
w;(z(t)) = H Mi;(z;(t)),
i1

where M;;(z;(t)) is the grade of membership of z;(t) in

the fuzzy set M,;. The weight functions w;, which are

nonnegative measurable, usually satisfy
Zwi(z(t)) >0 forall £ > 0. (3)

Throughout this paper, it is assumed that (3) holds
always, and that the vectors x(t) and z(t) can be mea-
sured in real time. With the normalization of weight

functions hy(z(t)) = wi(z(t))/ S0, wi(z(t)), the state
equation (2) can be written in the “polytopic” form:

x(t) = S @O Ax() + Bu@®}), (@)
=]

where the normalized weights h; satisfy h;(z(t)) >
0, =1, -,7and211h1 (t)) = 1 for vt > 0. In
general, premise variables do not depend on the input

u(t), but are heavily dependent on the state x(t), thus
the dynamics of the TS fuzzy system is basically of
nonlinear nature.

When u(t) = 0,v¢ > 0, the TS fuzzy system (4)
becoimes an input-free polytopic system:

x(t) »Z/l (z(t)

As is well-known from the stability theory, an au-
tonomous dynamical system is stable if there exmts a
positive definite quadratic function V(x) = x'Q'x
which decreases along every nonzero trajectory of the
system, and a system having such Lyapunov function
is called quadratically stable. In the polytopic system
(5), the derivative of V along a nonzero trajectory x(-)
is given by

dv (f)

)Ax(L). (5)

dt{x Q™ 'x(0)}
t){zz':l h1(z(t))A’{Q“[
- FQTY hala(0) Ax()
=37, R(z()xT (O{ATQ + Q 14 }x(¢).

Since ATQ"' + Q14; < 0 is equivalent to 4;Q +
QAT <0 when Q is positive definite, we can see that
the polytopic system (5) is quadratically stable if there
exists a symmetric matrix @) satisfying the following
inequalities [2], [6]:

Q>0 AQ+QA <0, i=1,.--,r. (6)
Note that the left-sides of these inequalities are all
linear in the matrix variable . Also, note that, if
each of the fuzzy IF-THEN rules (1) truly represents
the local dynamics, i.e. for each i € {1,---,r}, there
exists z(t) € R such that >0 | hi(z(t))A; = Ay then
the set of inequalities (6) becomes necessary as well

as sufficient for the quadratic stability of the TS fuzzy
system (5).

o find @) satisfying (6) or determine that there does
not exist such @ is a convex problem called LMI feasi-
bility problem. An LMI is any constraint of the form

A(x) 2 Ag + 1AL+ -+ anyAn <0, (7)
where x 2 (1, -+, xn) is the variable, Ag,---
given symmetric matrices and “<” stands for “negative
definite”. It is well-known that LMI-based optimiza-
tion problems as well as LMI feasibility problems can
be solved in polynomial time [2], and a toolbox of Mat-
lab which is dedicated to convex problems involving
LMIs is now available [3].

, Ay are

3. Fuzzy Controller Synthesis Using LMIs

In this section, we present LMI-based solutions to
the fuzzy controller synthesis problems for nonlinear
systems described by the TS fuzzy model. For the
sake of clarity and convenience, we classify the TS
fuzzy systems into two families based on how diverse
their input matrices B; are, and present an LMI-based
solution for each of these families.

First, we consider the family of the TS fuzzy systems
with the common input matrix property:
Bi=- =B, =B. (8)

We call this family 7'S(B). The state equation of the
TS fuzzy systems in T'S(B) can be described by

7.

x(0) = 3 k@) Ax() + Bult).  (9)
i=1
Thus, if we apply a TS fuzzy controller
u(t) = Z hi(z x(t), (10)
then we have the closed-loop described by
0 (L) B0, (1)

Note that the controller (10) is derived from the fol-
lowing TS fuzzy rules which share the same fuzzy sets
with the TS fuzzy model of the plant (1):
Controller Rule i:
IF z(t) is My and - -
THEN

u(t)

and z,(t) is My,

o Kix(t).

=1,
Smco the closed loop (11) is again in the form of a
polytopic system, the stability criterion (6) can be used
to obtain the following: If there exists a symmetric
matrix ) such that

Q >0, (Ai } BK;)Q 1+ Q(A; 1 BKi)T < (),

T

(12)
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then the closed loop (11) is stable. Note that, with the
definition of new variables ¥; = K;Q,7 == 1,---,r, the
stability problem (12) can be transformed to LMIs.
Thus, under the condition (8), stabilizing TS fuzzy
controllers can be found as follows:

Synthesis procedure for the family T'S(B):

e FindQ=QT e R™"and Y; e R¥*", i = 1,--- 1
satisfying
Q >0, A;Q+ QAT + BY; + YIBT <0, (13)
P= 1,

o Compute K; =Y;Q7 1, i=1,---,r.
e Set

= Z hi{z(t)) Kix(t)
=1

Next, we consider the stabilization of the family of
the TS fuzzy systems whose input matrices are not
all the same. We call this family T'S(B;). Note that
T'S(B;) is the complement set of T'S(B). We propose
a new fuzzy controller which has the following state
equation:

u(t) = Aqu(t) + Zr:hi(z(t))Kix(t). (14)
=1

Note that, in this strategy, the output of the typical
TS fuzzy controller

Zh

is postfiltered by a linear system G.(s) 2 (sI — A,)7L.
This is a simple modification of the original law of the
TS fuzzy control or the strategy of [1], but will lead
to a significant convenience in the controller synthesis.
With the control input u(t) defined by {14) applied to
the TS fuzzy system (4), we have the following:

>izg hi(z () {Aix(¢) + Biu(t)}
Acu(t + le hi(z(t)) Kix(t)

>y hi(z(t)){Kix(t) + Acu(f)}.

Thus, the resulting closed-loop is described by

X(t) = th ) [‘4 B un) (15)

urs{-) NKix(-)

:.
=
I

I

where X is the augmented state vector defined by
X(t)=[ xT(@t) ul(t) ]
By applying the stability condition {6) to this polytopic

system, we can see that the closed-loop (15) is stable
if there exists a symmetric matrix @ satisfying:

T

Q>0

A; B A; B 1F

# B love[ 2 B <o o
i=1,-+-,7

Note that the inequalities (16) are not linear in the
variables @, A., K;,7 = 1,---,r. But, by applying the
technique of elimination of matrix variables, we can
express (16) with the following LMIs in wlich the con-
troller matrices A, and K; are eliminated:

Q>0
/\/T([A Bi }QH Q[A B] >N<0
Il R

(17)

where N is any matrix of maximum rank satisfying
[ Opxn I, IN = 0. Of course, the most convenient

choice for N willbe N = [ I, 0., 17, by which

A B[4 B
o | * 1 0 o

can be simplified as [ A; B; | and [ A; B; |7,
respectively. Once the matrix ¢ which satisfies the
LMIs (17) is obtained, the controller matrices 4. and
K; can be computed from (16). Hence, we have the
following design procedure, which provides stabilizing
controllers in the form of a postfiltered TS fuzzy
controller for the family T5(B;):

Mf[ ]TN

Synthesis procedure for the family TS(B;):

e Find a symmetric matrix Q € R+P*(7+p) gatisfy-

ing
Q >0,
In T
[Ai Bi]Q[Op:!ﬂJ—‘r[In On;-:p]Q[Ai Bi] <0,

i=1,---,7

(18)

e Compute the controller matrices 4. and K, i =
1, -+, r by solving the LMIs (16).

o Set the TS fuzzy controller by

Zh (z(t))Kx(t

and the postfilter by

urs(t

U(s)
Urs(s)

= (s] — 4.) "

4. A Numerical Example

In this section, we present an example that illus-
trates a synthesis procedure developed in this paper.
The example considers a simple nonlinear mass-spring-
damper system which is adapted from the design ex-
ample 2 of [5]. The dynamic equation of the system is
given by

ME + g(z,2) + f(z) =

- p(&)u, (19)
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where M is the mass, g(z,&) = D{ciz + cpi) is the
nonlinear term with respect to the damper, f(x) =
c3k -+ C4m3 is the nonlinear term with respect to the
spring, and ¢(i) = 1 + ¢52° is the nonlinecar term with
respect to the input force. In the example, the param-
eters are set as f[ollows:

M=1D=1,

¢t = 0,00 = 1,3 =0.01,¢4 = 0.1,¢5 = 0.13.

Also, it is assumed that @ € [-1.5,1.5] and & €
T

k)

[—1.5,1.5]. With x; £ &, 19 E 2, and X = [ 2y @9 ]
the system (19) can be described by

X = { & }
Ty
_ [—ml —0.01zy — O.lmg]+[l + 0.13:c§]u
I 0

(20)

This system can be represented by the following TS
fuzzy model :

Rule 1: IF x; is about 0 and x is about 0
THEN x = Ajx -+ Byu,

Rule 2 : IF xy is about 0 and x9 is about + 1.5
THEN x = Asx + Bau,

Rule 3 : IF x; is about 1.5 and a9 is about 0
THEN x = Asx + Bju,

Rule 4: 1IF z is about 1.5 and z9 is about + 1.5
THEN x = A4x + Byu,

Rule 5: IF zy is about — 1.5 and 2 is about 0
THEN x = Asx + Bsu,

Rule 6 : IF x; is about — 1.5 and a3 is about + 1.5

THEN x = Ag¢x + Bgu,

where the weights w;; are nonnegative functions de-
fined by

1-22} fora; >0

wiy(T1) = 1+ —?7:1:? for z; <0,
N %ri’ for z; >0
wl?(a’l) - 0 for x; <0,
0 for xi >0

uns(x) =
13(1) %:L? for z; <0,
2

R — 4.,
wy (@) = 1 — ga3, was(xn) = i
This fuzzy model can be rewritten in the polytopic

form
6

S k() {Ax(t) + Bau,

i=1

x(t) = (21)

where the state space matrices and the weight functions
h; are given by

o [-1-001] , ., . [-1-0235]
A41~A3‘A5—[ 1 0 } ; A2~A4AA6——|i 10 J .

1 1.4388 0.5613
312322[0} ) 33234:[ 0 ] . BF::BG:[ 0 ] ,

hy(x(t)) = w21 (t))wa (z2(t)),
o (x()) = wi1 (@1 (t))waa(a(t)),
ha(x(t)) = wiz(x1(t))war (22(t)),
ha(x(t)) = wiz(x1(t))wan(za(t)),
D5 (x(t)) = wiz(@1(¢))war (22(2)),
he(x()) = wiz(z; (1)) waa(ra(t)),

and the fuzzy sets are defined as shown in Fig.1,2. In
this fuzzy model, the state variables ; and zo are
taken to be the premise variables, and the dimensions
of the state vector x and the input u are n = 2
and p = 1, respectively. Also, h;(x(¢¥)) > 0, Vi and
Z?:l Ii(x(t)) = 1 hold always. Since the input
matrices B; of the TS fuzzy model are not all the
same, the procedure for T'S(B;) is readily applicable
to the design of stabilizing fuzzy controllers. In the
following, we illustrate this synthesis procedure, in
which the software LMI Control Toolbox[3] is used to
compute the solutions of LMIs.

By solving the LMIs (16) and (18) , we obtain

A=-1.1629,

K;=[—3.4860 —1.4063 ], Ko=[ —3.7336 —1.4520],
K3=[—4.4792 —1.5896 ], K4=| —4.7268 —1.6354],
K= —2.4930 —1.2229), K¢=[ —2.7406 —1.2686 |.

Then the control signal u(t) is obtained from the fol-
lowing:

6

W) = Acu(t) + 3 ha(x(t) Kix(t).

i=1

(22)

Applying this controller to the system (20), we ob-
tain the result of Fig. 3 for the initial condition
x(0) = [ —1 ], in which u(0) == 0 is assumed for
simplicity. Note that the trajectory of Fig. 3 reflects
the design strategy enforcing the closed-loop stability
only. The result can be made better by incorporating
other performance requirements (on decay rate, bound
on the output, etc.) in the process of controller syn-
thesis.

5. Concluding Remarks

In this paper, we addressed the problem of design-
ing fuzzy controllers with guaranteed stability for non-
linear systems described by the TS fuzzy model. We
classified the TS fuzzy systems into two families T'S(B)
and T'S(B;) based on how diverse their input matrices
are, and presented different controller synthesis proce-
dure for each family. The procedures provide the TS
fuzzy controllers or their modified version according
to which family the given system belongs to. An ex-
ample of controlling a nonlinear mass-spring-damper
system was considered. Since each procedure is es-
sentially based on the LMI feasibility problem, LMI
Control Toolbox in Matlab environment was effectively
utilized in solving the problem, and a satisfactory sim-
ulation result was obtained. Further investigations yet
to be done include the refinement of the developed pro-
cedures toward a multi-objective design tool and a de-
tailed performance comparison with other methods.
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