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Abstract

The interval approach to the linguistic expression coding nears us to the human idea. Thus, what seems
"weak" for a person can appear very weak for another person or for the same person in others circumstances.
However, the utilization of intervals is not restrained to the cases of linguistic expression coding. Indeed, the

interval can facilitate the solution of several problems.
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1. Introduction

The use of linguistic expression such "small”,
“medium”, “large”, etc. to describe a given situation,
near us to the human perception. Nevertheless, the
attribution of these expressions can vary from one
person to another. Consequently, the numerical
coding of these expressions is very difficult

The interval approach [l] to the linguistic
expression coding nears us to the human idea. Thus,
what seems "weak" for a person can appear very weak
for another person or for the same person in others
circumstances. Therefore the attribution of linguistic
expression depends on several parameters like the
person itself and its environment. Therefore its value
is displayed on an interval.

Generally, a linguistic expression attributed to a
given situation is represented by fuzzy set
characterized by a membership function. The o level
of this function is an interval (see figure (1)).
Therefore the notion of interval is implicit in the
definition of fuzzy set relative to the linguistic
expression.

Thus. the coding by interval is justified.
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Fig.1 Example of memberships functions for the
linguistic expressions

However, the utilization of intervals is not
restrained to the cases of linguistic expression coding.

Indeed, the interval can facilitate the solution of
several problems. In this paper, we present a general
form of fuzzy inclusion degree of two intervals, and,
some interesting applications.

2. The fuzzy inclusion degree

The fuzzy inclusion degree inclusion introduced in
f1.2] is the consequence of coding by interval. It
measures the (mutual) inclusion degree of one interval
in another. This degree depends on the distance Dy,
(I, I,) that measures the dissimilarity between the
intervals I, and I,. It is a combination of three
distances:

- A distance that measure the remoteness of the
centers.

- A distance that measure the degree of the width
of the intersection,

- A distance that measures the width of the
difference of the sizes.

In this paragraph, we propose to study the
influence of each of these three distances on the curve
of fuzzy inclusion degree.

2.1. The role of the three functions

The use of the three functions secems to be
heuristic. However, we must use all of them. In fact:

1. If we use only a distance that measures the
remoteness of the centers (equation 2.4), then all of
the concentric intervals will have the same inclusion
degree as illustrated in the figure (2.a).

2. If we add just a distance that measures the
degree of the width of the intersection (equation 2.5),
then all of the concentric intervals with a very large
difference of size will have the same fuzzy inclusion
degree as illustrated in the figure (2.b).

3. If we add a distance that measures the width of
the difference of the sizes (equations 2.6 and 2.7). The
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result is satisfving as illustrated in the figures (2.c.
2.d).
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Fig. 2 The influence of the defined functions:
- (a): we use only the equation (2.4)
- (b): we use (2.4) and (2.5)
-(c): weuse (2.4). (2.5) and (2.6)
-(d): we use (2.4). (2.5) and (2.7)

2.2. Study of the distances

Let Ii=la, b} and L=[x. y]. the intervals of
description. l.et L= (b- a). the width of };. and L,= (v-
x). the onc of I-. O, the center of 1. and O- the one of

L.

We are going to study the following equations:

I
mt.lusmn(l 2 ) 1+Dim(Il,IZ )L ( )
or
D,... (I, 1,)¢ -k D, (1,.1,) 2.2)

With: Dy, (I;. 1) is the distance that measures the
dissimilarity between the intervals. It is 2 combination
of the following three distances:

DL LAt €L ((rd aﬂL»}'QJr(d(q’oz))‘G)
(2.3)

Where:
d (0,,0,)=(0,-0,) (2.4)
2
k(L,-L
f,(L,,L,)=1-e Gty (2.5)
f,(L,,L,)=1+log(1+(L,~L,)") (.6
=(1+(Li-L2)") (2.7

With k1>0. k2>0 and k3>0 are the coefficients of
weighting. Their role consists of accenting or
concealing the role of the corresponding functions.

We can say that:
(2. 4): measures the remoteness of the centers.

(2. 5). measure the degree of the width of the
intersection,

(2. 6). (2.7): measures the width of the difference
of the sizcs.

We present some concentric intervals with
different sizes. We have the reference interval [a,
bJ=[10.12] centered at the beginning in 1. And [x-1.
x+1] the arbitrary intervals, when x varies from 1 to
19. Thus. the reference interval gets larger for the i
tterations when a becomes a- (i-1) and b becomes
b+(i-1).

In the following sections. we illustrate the
influence of k. ki. k2 and k3. on the curve of fuzzy
inclusion degree using the equation (2.2). We use the
same examples.

2.2.1. Classic case (k1 -k2-k3- 1)

In this casc. the three functions have the same
cocfficients of weighting. We see that the fuzzy
inclusion degree of I, in I, gels as greater as |
becomes closer to I.. Its maximal value (<1) is
recached when the centers Ol and O2 of the two
intervals coincide. It is equal to | when the two
intervals arc exactly identical, and more the difference
of the sizes is important. more this value decreases
(see figure 3).
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Fig. 3 The classic case: the threc functions have the
same pondering coefficients

In this part. we fix k. k2, k3 and we vary kl, in
order to illustrate the influence of the function (2.6)
on the degree of inclusion.

We obtain the same results like the previous case
(classic case). Indeed. the fuzzy inclusion degree of I,
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in I, gets as greater as I, becomes closer to L. Its
maximal value (<1) is reached when the centers Ol
and O2 of the two intervals coincide. It is equal to 1
when the two intervals are exactly identical, and more
the difference of the sizes is important, more this
value is decreases.

However. we remark that:

The more kl is decreasing, the more the level of
bringing together of the inclusion curves is greater.
Thus the maximal values of these curves are relatively
brought together. Consequently, the number of curves
no null for intervals of different sizes is elevated. (See
figure 4)

As k1l is increasing, the curves are more distant
and tend to get null when the two intervals have very
different sizes. (Sce the figure 4)
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Fig. 4 The influence of k1

2.2.3. The influence of k2

In this part. we fix k, k1, k3 and we make vary k2,
in order to illustrate the influence of the function (2.5)
on the degree of inclusion.

Like the previous cases, the fuzzy inclusion degree
of I, in I, gets as greater as I, becomes closer 1o L. Its
maximal value (<1) is reached when the centers O,
and O, of the two intervals coincide. It is equal to 1
when the two intervals are exactly identical. and more
the difference of the sizes is important, more this
value is decreases.

We remark that:

The more k2 increases, the more the second curve
tends to bring together of the first one. The other
curves seem not influenced. This is owing to the fact
that the exponential function is very sensible to the
important difference of interval's size. (See figure 5)
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Figure 5. The influence of k2
2.2.4. The influence of k3

In this part, we fix k, k1, k2 and we make vary k3,
in order to illustrate the influence of the function (2.4)
on the degree of inclusion.

Like the previous cases, the fuzzy inclusion degree
of I, in [, gets as greater as I, becomes closer to L. Its
maximal value (<1) is reached when the centers Ol
and O2 of the two intervals coincide. It is equal to 1
when the two intervals are exactly identical, and more
the difference of the sizes is important, more this
value is decreases.

We remark that:

We have a very visible influence on the speed of
decreasing of inclusion function. Indeed, the more k3
is small. the more the function decreases slowly.
Then. once k3 becomes elevated, the function
decreases quickly.

We can cancel or accented the
interval’s position. (See figure 6)
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Fig. 6 The influence of k3
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4. Applications

In this section, we give concrete examples to
illustrate the influence of each function defining the
fuzzy inclusion degree. The comparison is given on
computing the inclusion degree between the first
element and all elements of the considered set.

4.1. The two parity problem

The even-parity patterns have an associated output
value of 1 and the odd-parity have an output of 0. We
can see that a regular metric would not allow us to
solve the problem of XOR.

However. if we describe this set with the interval
formed between the two attributes, we can note that
the intervals formed between the even parity patterns
or the odd parity, have the same size. So, it’s logic to
cancel the influence of interval’s position and
accented the role of the others functions. The results
of such operation are illustrated in the figures 7.8
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Fig. 7 A set of Xor problem
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Fig. 8 Obtained separation for Xor Problem. We can

see that:

- For k= 0.45, k1=4, k2=5. k3=0.02, the separation
is complete, because we have relatively concealed
the position of the interval.

- For k=0.45, k1=4, k2=3, k3=1. the separation
becomes relatively incomplete.
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4.2. The Iris data of Anderson

The Iris data of Anderson{3] has often been used as
a standard set for testing the performances of data
analyses algorithms and discrimination’s criteria. In
fact, the real structure of this set is difficult to recover.
The data consists of 150 four-dimensional vectors that
form three clusters. The components of a vector are
the measurement of the petal length, petal width,
sepal length and sepal width of a particular iris plant.
We are concerned here only with the two varieties not
well separated. There are 50 plants in each of the two

varieties represented in the data: Virginia iris and
Versicolor iris.

Fig. 9 The evolution of characters of two varieties of
the Iris data of Anderson

By examining the graph in the figure 9, that
represents the evolution of characters of the two
varieties. we notice that there is a certain relationship
that links parameters. Therefore, we have represented
varieties by intervals Ii as it illustrated in the figure
(9). We can also sec that the position of the intervals
can influence the result of the separation. So, we must
chose adequacy the coefficients of pondering in order
to translate as well the separation. The results of such
operation are illustrated in the figure 10.
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Fig. 10 Obtained separation for the Iris data. We can

see that:

- For k= 0.25. k1=4, k2=5, k3=0.5, the separation
is relatively complete.

- For k=0.25, kl=4, k2=5, k3=1, the separation
becomes more complete.

- For k=0.25, k1=2. k2=2, k3=2, the separation is
incomplete.

4.3. Construction of cluster’s prototvpes

Clustering has long been a popular approach to
unsupervised pattern recognition. Fuzzy clustering
has been shown to be advantageous over crisp one [7].
The major factor that influences the determination of
appropriate groups of points is the “distance measure”
chosen for the problem at hand. and the choice of
representative prototype. Data is generally expressed
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as a collection of vectors in R" [8] and in most cases,
the distance D is simply the Euclidean Distance in R".

Nevertheless, the two approaches are generally
based on an adjustment of the prototype vector
representing the appropriate cluster. This adjustment
can falsify the representation of the class especially if
the noise is present.

In this paragraph, we proposc a new clustering
approach in order to establish a prototype of
representation  that can  overcome  several
inconvenient. This approach will include general
structures. Our goal is to construct prototypes formed
by fuzzy curves once the classification has advanced.
So. we can supervise the results of classification by
following the development of  prototypes.
Consequently. we can have the possibility to return
back and correct if it’s necessary.

4.3.1. Method principle

The principle of the method is simple. Indeed,
instead of adjusting the prototype using a linear
combination, we are going to link the new element to
the ancient by a curve. It is similar to the process of
filling a thread with adequate pearls.

This method has a lot of advantages. First, we do
not lost information due to the adjustment of the
prototype vector. And, we have the possibility to
return back and to correct. And finally. we can
supervise the functioning of the clustering because the
resolution is graphic.

4.3.2. Clustering using interval’s description

We use the Iris data of Anderson, because they give
an illustrating example of prototype. We propose to
represent the varieties using the intervals [3] as it
illustrated in the figure 9. We have not added any ad
hoc information. So, in stead of representing the
elements with a vector formed by the four characters
(cl. c2, c3, c4), we will represent it with a vector
formed by six intervals (I;, L..... I;) who represents
the width of the intervals formed by the superposition
of the four characters[2] . And for the discrimination,
we compare the degree of fuzzy inclusion between the
defined intervals.

4.3.3. Construction of prototypes in sequential
manner

The construction of prototypes is made element by
element and in sequential manner. The general form
of the algorithm is like following:

Fix the threshold, initialize the number of cluster
C=1I

Initialize the prototvpe of the first cluster with the
first element

Jor i=2 to number of elements

Jorj=1to C

compute the fuzzy inclusion degree
seek the maximum degree with its prototvpe
if (maximum > threshold)
link the element to this prototype by a curve

else
initialize another prototype
c=ctl.

The obtained results are illustrated in the following
figures. We can sec that the number of prototypes
depends on threshold. In addition, the last part of the
first prototype (the framed one) is not conform with
the shape of all the fuzzy curve. So. we must search
another algorithm that can give us a unique prototype.
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Fig. 11 Obtained prototype for the Iris data with
threshold =0.5
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Fig. 12 Obtained prototype for the Iris data with
threshold =0.55

Remark

We put in order all elements of the two clusters
before using them in the algorithm. So, we can say
that this method depends on the order of apparition of
the elements. However, even if the elements are put in
order we have net succeed to separate them.

4.3.4. Construction of prototypes in selective manner
The construction of prototypes is made by choosing

the most similar elements. The general form of the
algorithm is like following,
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First construction

Fix a threshold verv high (-0.7), initialize the
number of cluster C=1;
Initialize the prototvpe of the first cluster with the
two most similar elements
repeat
seek the closer elements to the prototype C
if (inclusion degree > threshold)
link the element to this prototype by a curve
else
initialize another prototype with the two similar
elements (in the set of elements not used)
C=C+1.
Until (number of elements)
second construction
regroup the most similar prototype in one curve
or regroup the similar prototvpe in one cluster

The result of the first construction is as follows.

i o s

Numbec of slompnts.

Fig. 13 Obtained prototypes for the Iris data

This first construction tries to gather the most
similar elements in one prototype. So. different
prototypes can represent the same cluster.( See
prototypes in following figures (2.3.4.5)). This
construction is unique.

The second construction is illustrated in the
following figure.

We undertake this construction using two manners.
Indeed, we can try to gather the most similar
prototypes in one prototype or we can let the
prototypes without linking them and allocate them in
one cluster.

In this case, we should define an inclusion degree
relative to each element in each cluster. This inclusion
degree is the maximum value that it can take in each
prototype that represent the cluster. Thus. if we want
to verify the affiliation of an element in a cluster we
should seek the inclusion degree of this element in

cluster: the element will be member of the cluster
giving the higher inclusion degree.
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Fig. 14 Obtained final prototype for the Iris data
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