On fuzzy semi-topological properties

Y. S. Ha, K. Hur, and J. R. Moon

Dept. of Mathematical Science, Wonkwang University Iksan, Chunbuk 570-749, South Korea. kulhur@wonnms.wonkwang.ac.kr

Abstract: We introduce the concept of a fuzzy irresolute mapping and a fuzzy semi-homeomorphism. And we find some properties of them

Preliminaries

Let I = [0,1]. For a set X, let I^X denote the collection of all mappings from X into I. A member A of I^X is called a *fuzzy set* of (or in) X (cf. [6]).

Definition 1.1[2]. A subfamily \Im of I^X is called a *fuzzy topology* on X if \Im satisfies the following conditions:

- (i) \emptyset , $X \in \mathfrak{I}$. (ii) If $\{U_{\alpha} : \alpha \in \Lambda\} \subseteq \mathfrak{I}$, then $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in \mathfrak{I}$, where Λ is an index set.
- (iii) If $A, B \in \mathcal{I}$, then $A \cap B \in \mathcal{I}$.

Members of \Im are called *fuzzy open sets* in X and their complements *fuzzy closed sets* in X. The pair (X, \Im) is called a *fuzzy topological space*(fts, in short).

Notation 1.A. For a fts X, let:

- (a) FO(X) denote the collection of all the fuzzy open sets in X.
- (b) FC(X) denote the collection of all the fuzzy closed sets in X.

Definition 1.2[1]. For a fuzzy set A in a fts (X, \Im) , the *closure*, \tilde{A} and the *interior*, \tilde{A} of A are defined respectively, as

$$\check{\Lambda} = \bigcap \{ B : A \subseteq B, B^c \in \Im \} \text{ and } \mathring{\Lambda} = \bigcup \{ B : B \subseteq A, B \in \Im \}.$$

Definition 1.3[1]. Let A be a fuzzy set in a fts X. Then:

- (a) A is called a *fuzzy semi-open set*(f-semi-open set, in short) in X if there is a $B \in FO(X)$ such that $B \subseteq A \subseteq \overline{B}$.
 - (b) A is called a fuzzy semi-closed set(f-semi-closed set, in short) in X if there

is a $B \in FC(X)$ such that $B \subseteq A \subseteq B$.

Notation 1.B. For a fts X, let :

- (a) FSO(X) denote the collection of all f-semi-open sets in X
- (b) FSC(X) denote the collection of all f-semi-closed sets in X

It is clear that $A \in FSO(X)$ if and only if $A^c \in FSC(X)$.

Proposition 1.4. Let X be a fts. Then:

- (a) $FO(X) \subseteq FSO(X)$ and $FC(X) \subseteq FSC(X)$.
- (b) If $A \in FOS(X)$ and $A \subseteq B \subseteq \overline{A}$, then $B \in FSO(X)$.

Throughout the next sections, X, Y, Z ··· etc, will denote fuzzy topological spaces.

2. Some properties of f-irresolute mappings.

The characterization of f-irresolute mapping was known in [7]. We will investigate another properties of f-irresolute mappings.

Definition 2.1[1,2,4,5]. Let $f: X \rightarrow Y$ be a mapping. Then f is said to be:

- (i) fuzzy continuous (f-continuous, in short) if $f^{-1}(A) \in FO(X)$ for each $A \in FO(Y)$ or equivalentely $f^{-1}(B) \in FC(X)$ for each $B \in FC(Y)$.
 - (ii) fuzzy open (f-open, in short) if $f(A) \in FO(Y)$ for each $A \in FO(X)$.
 - (iii) fuzzy closed(f-closed, in short) if $f(B) \in FC(Y)$ for each $B \in FC(X)$.
- (iv) fuzzy semi-continuous(f-semi-continuous, in short) if $f^{-1}(A) \in FSO(X)$ for each $A \in FO(Y)$.
- (v) fuzzy semi-open (f-semi-open, in short) if $f(A) \in FSO(Y)$ for each $A \in FO(X)$.
- (vi) fuzzy semi-closed(f-semi-closed, in short) if $f(B) \in FSO(Y)$ for each $B \in FC(X)$.
- (vii) fuzzy irresolute (f-irresolute, in short) if $f^{-1}(A) \in FSO(X)$ for each $A \in FSO(Y)$.

Notation 2.A. (a) $FC_n(X, Y) = \{ f: X \rightarrow Y : f \text{ is f-continuous } \}$.

- (b) $FO(X, Y) = \{ f: X \rightarrow Y: f \text{ is f-open } \}$.
- (c) $FC(X, Y) = \{ f: X \rightarrow Y : f \text{ is f-closed } \}$.
- (d) $FSC_n(X, Y) = \{ f: X \rightarrow Y : f \text{ is f-semi-continuous } \}$.

- (e) $FSO(X, Y) = \{ f: X \rightarrow Y : f \text{ is f-semi-open } \}$.
- (f) $FSC(X, Y) = \{ f: X \rightarrow Y: f \text{ is f-semi-closed } \}$.
- (g) $FI(X, Y) = \{ f: X \rightarrow Y: f \text{ is f-irresolute } \}$.

Proposition 2.3. (a) $FC_n(X, Y) \subseteq FSC_n(X, Y)$ and $FI(X, Y) \subseteq FSC_n(X, Y)$.

(b) $FO(X, Y) \subseteq FSO(X, Y)$ and $FC(X, Y) \subseteq FSC(X, Y)$.

Remark 2.4. (a) $FC_n(X, Y) + FSC_n(X, Y)$, FO(X, Y) + FSO(X, Y) and FC(X, Y) + FSC(X, Y) (See Example 6.3 in [1]).

(b) $FI(X, Y) + FSC_n(X, Y)$ (See Example 2.4 in [4]).

Example 2.5. A f-continuous, f-irresolute mapping need not be f-open.

Let $X=\{a,b,c\}$ and consider the fuzzy topologies $\Im^*=\{\emptyset,O_1,O_2,X\}$ and $\Im=\{\emptyset,O_1,O_2,O_3,X\}$, where

$$O_1 = \{ (a, 0.3), (b, 0), (c, 0) \}, O_2 = \{ (a, 0.3), (b, 0.6), (c, 0) \},$$

 $O_3 = \{(a, 0.3), (b, 0), (c, 0.7)\}.$

Then clearly, $FSO(X, \Im) = FSO(X, \Im^*)$. Let $id: (X, \Im) \to (X, \Im^*)$ be the identity mapping. Then clearly id is f-continuous and f-irresolute. But id is not f-open.

Theorem 2.6. Let $f: X \to Y$ be f-continuous and f-open. If $A \in FSO(X)$, then $f(A) \in FSO(Y)$.

Definition 2.7[3]. For a fuzzy set in a fts X, the fuzzy semi-closure(f-s-closure, in short) \underline{A} and the fuzzy semi-interior(f-s-interior, in short), A_o of A are defined respectively, as

 $\underline{A} = \bigcap \{ B : A \subseteq B, B^c \in FSC(X) \} \text{ and } A_o = \bigcup \{ B : B \subseteq A, B \in FSO(X) \}.$ It is clear that $A \in FSC(X)$ if and only if $A = \underline{A}$.

Theorem 2.8. $(\bar{A})^o \subset (\underline{A})_o$ for each $A \in I^X$.

Theorem 2.9. If $f: X \to Y$ is f-continuous and f-open, then $f^{-1}(\overline{A}) = \overline{f^{-1}(A)}$.

Corollary 2.9.1. If $f: X \to Y$ is f-continuous and f-open, then f is f-irresolute.

Theorem 2.10. $f: X \to Y$ is f-irresolute if and only if for each $B \in FSC(Y)$, $f^{-1}(B) \in FSC(X)$.

Corollary 2.10.1. A mapping $f: X \rightarrow Y$ is f-irresolute if and only if for each

 $A \in I^X$, $f(\underline{A}) \subset \underline{f(A)}$.

Corollary 2.10.2. A mapping $f: X \to Y$ is f-irresolute if and only if for each $B \in 2^Y$, $f^{-1}(B) \subset f^{-1}(B)$.

Theorem 2.11. If $f: X \to Y$ and $g: Y \to Z$ are both f-irresolute, then $g \circ f: X \to Z$ is f-irresolute.

Definition 2.12. A mapping $f: X \to Y$ is said to be *fuzzy pre-semi-open* (f-pre-semi-open, in short) if for each $A \in FSO(X)$, $f(A) \in FSO(Y)$.

Theorem 2.13. If $f: X \rightarrow Y$ is f-continuous and f-open, then f is f-irresolute and f-pre-semi-open.

Definition 2.14. X and Y are said to be *fuzzy semi-homeomorphIc*(f-semi-homeomorpic, in short) if there exists mapping $f: X \to Y$ such that f is bijective, f-irresolute and f-pre-semi-open. Such an f is called a *fuzzy semi-homeomorphism*(f-semi-homeomorphism, in short).

Corollary 2.13.1. If $f: X \rightarrow Y$ is a f-homeomorphism, then f is a f-semi-home omorphism.

Example 2.15. A f-semi-homeomorphism need not be a f-homeomorphism. Consider $f: (X, \mathcal{I}) \to (X, \mathcal{I}^*)$ as in Example 2.5. Then f is a f-semi-homeomorphism, but f is not a f-homeomorphism.

3. Some properties of fuzzy semi-homeomorphisms

Theorem 3.1. If $f: X \to Y$ is a f-semi-homeomorphism, then $\underline{f^{-1}(B)} = f^{-1}(\underline{B})$ for each $B \in I^Y$.

Corollary 3.1.1. If $f: X \to Y$ is a f-semi-homeomorphism, then $\underline{f(B)} = f(\underline{B})$ for each $B \in 2^X$.

Corollary 3.1.2. If $f: X \to Y$ is a f-semi-homeomorphism, then $f(B_o) = (f(B))_o$ for each $B \in 2^X$.

Corollary 3.1.3. If $f: X \to Y$ is a f-semi-homeomorphism, then

 $f^{-1}(B_0) = (f^{-1}(B))_0$ for each $B \in 2^X$.

Definition 3.2. Let $A \in 2^X$. Then A is said to be *nowhere dense* in X. If $(\overline{A})^o = \emptyset$.

Theorem 3.3. For each $A \in 2^X$, $(\underline{A})_{\varrho} = \emptyset$ iff A is nowhere dense in X.

Corollary 3.3.1. If $f: X \to Y$ is a f-semi-homeomorphism, and A is nowhere dence in X, then f(A) is nowhere dense in Y.

Theorem 3.4. Fuzzy semi-homeomorphic is an equivalent relation between fts.

Definition 3.5. A property which is preserved under f-semi-homeomorphism is called a *fuzzy semi-topological property*(f-semi-topological property, in short).

Definition 3.6. A fuzzy set A in X is said to be *of the first category* if A can be written as a countable union of fuzzy sets nowhere dense in X. The fuzzy set A is said to be *of the second cauntable* if A is not of the first countable.

Theorem 3.7. The property that a fts is of the first category is a f-semi-topological property.

Corollary 3.7.1. The property that a fts is of the second category is a f-semi-topological property.

Theorem 3.8. A f-semi-topological property is a f-topological property.

REFERENCES

- [1] K.K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl.82 (1981) 14–32.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [3] S. Ganguly and S.Saha, A note on semi-open sets in fuzzy topological spaces, Fuzzy Sets and Systems 18(1986) 83-96.
- [4] M.N. Mukherjee and S.P.Sinha, Irresolute and almost open functions between fuzzy topological spaces, Fuzzy sets and Systems 29(1989) 381-388.
- [5] C.K.Wang, Fuzzy topology product and quotient theorems, J. Math. Anal. Appl. 45 (1974) 512-521.
- [6]L.A.Zadeh, Fuzzy sets, Inform and Control. 8(1965) 338-353.