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A novel fuzzy basis function vector-based adaptive control approach for Multi-input and Multi-output (MIMO)
system is presented in this paper,in which the nonlinear plants is first linearised,the fuzzy basis function vector is
then introduced to adaptively learn the upper bound of the system uncertainty vector,and its output is used as the
parameters of the compensator in the sense that both the robustness and the asymptotic error convergence can be

obtained for the closed loop nonlinear control system.
Keywords:

1. Introduction

In recent years,fuzzy logic control technique has had
an increasing impact in control engineering
community. However,some important theoretical and
practical problems have not be solved. For
example,error convergence,stability and robustness
have not fully proved for fuzzy logic control schemes
where Mamdani-type linguistic models and Sugeno
fuzzy models are used to deal with systems with
uncertain dynamics.The recent developments in [1][2]
using fuzzy basis function networks for model-
reference adaptive control have made a great progress
in solving the above problems.

In [1],a fuzzy basis function network is used to
approximate an unknown system parameter vector and
the weights of the fuzzy basis function network are
then adaptively adjusted. But it lacks of the proof of
the stability.In [2],a stable adaptive control approach
using fuzzy systems and neural networks is
presented,its control is comprised of a bounding-
control term,a sliding-mode-control term,a certainty-
control term.The hybrid control approach is designed
in a very complicated way that it is hardly to be used in
practice.Morever the emphasis in the above techniques
is placed on the control of single-input single-output
(SISO) plants.

In this paper, a fuzzy basis function vector based
adaptive control is proposed for MIMO square
nonlinear systems.It is shown that the nonlinear system
is first linearised,the linearised nonlinear system is
then treated as a partially known system. The known
dynamics are used to design a nominal feedback

Stability, Robust control, Fuzzy basic function vector

controller to stabilise the nominal system,and a fuzzy
basis function vector-based compensator is then
designed to compensate the effects of system
uncertainties. By the intensive design of Lyapnove
function,we prove the stability of the closed loop
nonlinear control system and obtain both the
robustness with respect to unknown dynamics and the
asymptotic error convergence for the system in the
meantime.

2. Problem formulation

Consider the foliowing MIMO square nonlinear
system (i.e., a system with as many inputs as outputs)
given by:

m
X = f(X)+ jélgj(/\’)uj Q)

.yl(t)::h](X)
nH
Yu(l)=h, (X)
where X eR" is the plant state vector,

U = [ul,u:m U,
Y = [%a)’:"' ,ym] e R™ is the
F()g () RT = R™IFL2.m are
functions  vector,s (.): R" - R,

smooth functions. For convenience, the above equation
will be rewritten in a condensed form:

] e R™ is the control input vector,
output vector,
smooth

i=1,2,....m are

X = f(X)+G(X)HU 2)
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Y =h(X) 3)

where
U =col(u,,u,,...u,)
Y=col(y,,y.,...¥,)
G(X)=[g(X).g.(X)....g,(X)]
(X)) =col(h(X).h,(X),...h, (X))

We recall the definition of the relative degree of a
nonlinear system to characterize the system. it is
necessary to define some notations. The derivative of a
scalar function 4 alone a vector f=[f,,..f]" is

defined as

£,0¥)
=122y

X, X,
LX)

LA
Lgx)=

el
ks

-

ACS
4)

where X=[x,.....x,]", and the derivative of ¢ taken

first along f and then along a vector g is

a(L
Ll ¢(X)= (W¢) (X) )
If ¢ is being differentiated j times along f, the

notation L"/¢ is used with LOg(X)=g(X).

Differentiating the output y, with respect to time t in
eqn(1),we have

. m ©6)
yi= thi(X) + ]él nghi(X)uj(t)

where,

L,h(x) and [ p(x) are the Lie

derivatives of h(X) with respect to f(X) and
g(X),respectively.
If L, h(X)=0, then [ -/ 4 (x)-
Continuing in this process,we get:
S Db (X)+ Y Ly L (X, () ™
7=l

for © L) n(x)=Ol<t-1 and [ 175 (X)=0.

In this way,we may rewrite the plant’s input-output
equation as:

W “L'}hl LR.L'} 'h[(X)“-LgmL’}“'h.(X) u,(t)
=| N

ylm L,h,,, L, Ly ‘h,,,(X) L, L'k, (X) u,,,(t)

Y()  B(X.D J(X,0) U

(8)

An ideal static-state feedback linearizing control law
can be obtained by

U'=J"(-B+V) 9

We will define the term V below.In order for U" to
be defined,some assumptions about the plant have to
be met. In particular,we need the following:

A.1 Plant Assumption

(i) The matrix J as defined above is nonsinqular.

(ii) The plant has a general vector relative degree
[rl,...,rp]T., and its zero dynamics are exponentially
attractive.

3. Fuzzy system formation

Definition 1

IA} is modulus of matrix A,i.e.,matrix with modulus
elements of A.

“A” is a I, norm of matrix A,which is with the

performance of compatibility.

|A|</B| means fa<|b), Va,€A and Vb;e B,
where A={a; }, B={b;}.

|Al, is a matrix,in which all the elements are equal to
and a... = n?zjx’a”‘ where 4 = {a”} .

sign(A) is a sign matrix,which meets the condition of
Asign(A)=|A|,where A is a vector.
tr(A) is the trace of the matrix A.

a

max ?

From eqn(8) we can obtain: .

E(X)Y=F(X)+U (10)
where F(X)=J'(X) eR™m (1)
F(X)=J'(X)B(X) €R™ (12)

and E(X)" and F(X) are assumed to be bounded by the
following unknown positive function P,(X) and vector

Q(X):

0_«:"5()() ‘]‘< P(X) (13)

(X (14)

), < 0,0X)

In practical situation,E(X) and F(X) may not be
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exactly known, E(X) and F(X) may then be expressed
as

E(XN)= E,(X)+AE(X) (15)

F(X)= F(X)+AF(X) (16)
where E (X) (nonsinqular) and Fy(X) are known parts,
and A E(X)and A F(X) are unknown parts.

Remark 1. According to the bounded properties of
E(X) and F(X) in eqs(11)(12), uncertain dynamics
A E(X)and A F(X) are also bounded by

“AE(X)"H<P2(X) a7

JAF ()] <04 (X) (18)

where P,(X) and Q,(X) are unknown positive function
and function vector of X.

Based on above analysis,eqn(10) can be written as
the following form:
E,(X)Y = F,(X)+ U + p(1) (19)
where p(1) = AF(X) - AE(X)Y
is defined as the system uncertainty vector.

(20)

The following system without uncertainty is defined
as a nominal system:

E(X)Y = F(X)+U @2n
For the nominal system in eqn(21), let
U=E (X)) - F(X) (22)

where V=[v,v,,...,v,]" is chosen to provide stable
tracking.Namely let:

RN 2 An-D e
v, »}7% a, ,& a,&

r-2%i PRI

(23)

i

the output tracking error & Ay, — y

(24)

d,

where y , is the desired reference trajectories of

y;.and the parameters a;, 2senay, I eqn(23) are

chosen such that the following polynomial

A(s)y=s""+al ,s"7

(25)

+....t+a,;s+a,

is Hurwita, then the error dynamics of the nominal
system has the following form:

e val e+, +ale, =0 (26)

Eqn(26) means that the output tracking error &,
will asymptotically converge to zero.

Consider the system in eqn(19) with uncertain
dynamics,the control input of the closed loop system
can be set in the following form:
U=U,+U, (27
where U, is given in eqn(22) to stable control the
nominal system(21) and U, is used to deal with the

effects of the uncertainty.
From egn(19),we have

EA(X)Y =F(X)+U,+U, +p() (28)
From eqn(23),we have
V=y" -4, " - —Ae (29)
where
n=max{r,}
A, = diagla),a’,...,a"l (i=0)..,n~2)
eV =g, 6,01 (i=12,..,n-1)
S F S S D
Substitute eqn(22) into (28),we have
E (X)) =1)=U, +p(1) (30)
or
Y-V =Y-Y"+4, 6" "+ . +4¢ 30

Then the error dynamics of the closed loop system
with uncertainty become

EM A e e = E(X) o+ Ex(X)'U, (32)

For the bounded property of system uncertainty
vector O(f) in eqn (20) we have the following

lemma:

Lemma: Consider the system uncertainty vector p(?)
in eqn(20).If the control input U is designed in the
sense that the modulus vector of the control signal is
upper bounded by a positive function vector U, (X),

U (1) (33)

L < U i (X)

max
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then the modulus vector of the system uncertainty
vector (1) is upper bounded by a positive function

vector p(X)

| P(OI=IAF(X) = AE(X)Y]< B(X) (34)
Proof:

Eqn(10) can be written as the following form:
Y=E(X)'F(X)+ E(X) U (3%)

Using eqn(35) in eqn(20),we have

A = AF(X) = AE(XYEY) " F()+ E(X) 'U)

= AF(X) = AE(X)YE(X) ' F(x) = AE(X)EX)) ' UW)
(36)

then

AL S|AFLY |+

AEC)ECY) FOo| +HAECOECY) ™ Ul)
<[AFCO+HAECO|ECO | Fool, +|AECH] | EC fuey,

<OUN)+ PRGN + PP, (X = p(X)
(37

Remark 2: It is seen from above lemma that the
bounded property of the system uncertainty ()

depends on the system structure and the form of the
controller. It will be seen in the next section that the
control sigral satisfies the condition in eqn(33),and
therefore,the bounded condition of the system
uncertainty in eqn(34) is always held.

In this paper,we will use the following fuzzy basis

function network to learn
PLX) =[P (X )P, (X )eep, (X))’ the  upper
bound of the system uncertainty vector:

pX.0)=0g(x) (i=1.2,..m) (38)

where 9 < RY isthe weight vector of the fuzzy basis
. g )

expansion vector HX) .
HX)=[4,(X),d,(X).....8,, (X)] in which the j-
th fuzzy basis expansion defined as
[Ta, &) .

#,(X) = 9

N BVHED

71 oa=l
with 7 /(x’):expli-—( ! _f‘4'1)~:| (40)

where ,, (x ) is the membership function of x; in
ar :

fuzzy set 4/ .cy; is the centre of u,(x) Oy is

the width of M, (x,),and M is the number of fuzzy

rules.
For the further analysis, the following assumptions
are made:

A.2: Given an arbitrary small positive constant vector
£ and a continuous function vector (.Y ) defined in
eqn(37) in a compact set X there exists an optimal
weight matrix #° such that the output vector of the
optimal fuzzy network satisfies

nea\»xlE(X )| = rrtl,a}‘ﬁ"'w.’()—/_)(/\‘ )|< " “4n

with Z(x)=8""¢(X)- p(X) (42)

*

1

where 0" =1(6,.0.,...,0,] e R""

A.3 The modulus vector of the system uncertainty and
its upper bound satisfy the following relationship in the
compact set 2 :

p(X)=|p(t)> &> F (43)
From (43) and (42) we know:
0" X)- p(X)>0 (44)

where O is a zero vector.

The objective of this paper is to design a robust
adaptive compensator U, using the fuzzy basis
function network in eqn(39) so that the closed loop
system has strong robustness and the output tracking
error is guaranteed to asymptotically converge to zero.

4. Compensator design

Let E =[g.&,....,e""]) qn(32) can then be
written as the following state equation form:

E=AE+YWE(X) 'p)+WE(X) 'L, (45)
O I O.. O
0] 0] I.. O

where A= (46)

~Ay— A, ~A,..— 4
¥=[0 O 0. 1)
E e Rllmk]’A e Rmn«nm,t}; E anxm'

n=1
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For the design of the adaptive compensator using
the fuzzy basis function vector and analysis of error
convergence of the closed loop system,we have the
following theorem:

Theorem: Consider the error dynamics in eqn(45):
I (a) the compensator U, is designed as follows

Uy = E (W) [FOAE = sign SCWE() o dx x)
(47)

where the vector

SeR”.CeR™™
(b) the matrix C should be chosen such that the
polynomial s; is Hurwitz about &, (i=1,2,...,m);

S=CFE = [sl,.,.,sm]r,

(c) the matrix 0 in eqn(47) is updated by the
following adaptive mechanism:

6 = ng(X|E'CT|lowE, (X)) (48)

with 77 >0 and arbitrary positive initial values vector

g,
then the output tracking errors
asymptotically converges to zero vector.

vector &

Proof: Considering following Lyapunov function

v= %S"S+%q"tr[’é"é] (49)
where §=6" -0 (50)
6=-0 1)
Then
v=STS M8 0) = E'CTOVE,(X) pn)
-010" qO|E'CTlowE, ()
= ECTOVE(X) ptn -|E"CT || owEs (x0)l6 ¢ x)
<|E"CHovE, Oflan|- 0" g
<0
(52)

5. Conclusion

An adaptive controller using fuzzy basis function
vector is proposed in this paper.Our analysis
demonstrates that the the weights of the fuzzy network
converge to their optimal values,and the values of the
weights are adaptively adjusted untill the variable
vector S converges to zero.Then the weights will

become constants to guarantee that the output tracking
error asymptotically converges to zero after S=CE=0.
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