The Third AFSS(1998), 128 —133

Implementation issues for Uncertain Relational Databases

Hairong Yu, Arthur Ramer

School of Computer Science and Engineering, University of New South
Fax:4+61-2-9385-1814 E-mail:{hairong,ramer }@cse.unsw.edu.au

Tel:+61-2-9385-{3980,3978}

/ales, Sydney 2052, Australia

Abstract: This paper aims to present some ideas for implementation of Uncertain Relational Databases (URD)
which are extensions of classical relational databases. Our system firstly is based on possibility distribution and
probability theory to represent and manipulate fuzzy and probabilistic information, secondly adopts flexible
mechanisms that allow the management of uncertain data through the resources provided by both available
relational database management systems and front-end interfaces, and lastly chooses dynamic SQL to enhance

versatility and adjustability of systems.

Keywords: Relational databases, Possibility distribution, Relational algebra, First-order logic of probability.

1 Introduction

In the real world, information is not always precise
and imperfect, and sometimes, might be missing or
hard to get. When all these uncertain data involve,
many researchers have been desirable to illustrate it
in the databases so that it could be used to answer
queries of interest as much as possible for many years
[7, 25, 1, 5, 21, 20, 2, 15, 9, 11, 30].

We propose a generalised model: an uncertain re-
lational database (URD), basically non-first normal
form, to handle uncertain information in relational
databases. As all kinds of uncertainty: imprecision,
fuzziness, incompleteness, vagueness, inconsistency,
ambiguity, etc could be classified into two group: pos-
sibilistic and probabilistic. URD is made to use of
possibility distributions attached with attributes and
probabilities affiliated to tuples to depict and compute
those various uncertainness.

A prototype called Uncertain Relational Database
System (URDS) is an experimental model which puts
URD into practice. The objective to build URDS
is that it must be capable of retrieving information
stored in conventional database systems plus uncer-
tain data processing. Owning to the fact that a ma-
jor number of database application system has been
developed using relational database system and writ-
ten in SQL which is a widely accepted and interna-
tional standard. These resources cannot be neglected
in proposing URDS.

A system which is based on classical relational
databases and its declarative query language with ad-
ditional requirement to be able to process uncertain
values of attributes and predicates, is outlined ini-
tially.

The system is written by C as the host language and
embedded SQL to deal with a traditional database en-
gine which is Oracle V7.3 under IRIX on SGI work-
station.

The rest of paper is organised as follows. In next
section, we give a brief review of URD model, and
express the approach to URD algebra. Section 3 is
devoted to overview URDS architecture and its com-
ponents. In section 4, more detail for the system is
showed. And section 5 contains some concluding re-
marks.

2 URD Model

The URD model describes how real-world data can
be conceptually represented as computerised informa-
tion. It also includes the type of operations available
to access and update the information.

The constituent parts of a URD are a set of un-
certain relations comprised of tuples, similarly to an
ordinary relational database. However each tuple, or
its fields, may have a richer structure than standard
relational tuples.

We define uncertain relation as generalisation of
Codd’s relation mode! of data [24] by associating pos-
sibility with attributes to express possibilistic data
and an additional value p(t) to indicate the probabil-
ity that tuple t belongs to an uncertain relation R.

Definition 1
An uncertain database D is defined as a set of un-
certain relations R;, where 1 = 1,2,...,n, ie. D =

{R1,Ra,...,Rn}.

~128~—

Definition 2

Let R(A:, Az,...,An) be a relation schema where
dom(A;) is the domain of A;, for i =1,2,...,m. An
uncertain relation R of relation R is defined as fol-
lows:

R C {(t,p(t)) | t = (a1,0a9,...,am)
€ DOM(A,) x DOM(A3) x --- x DOM(Ap),

p(t)}

Where p(t) € [0,1] and symbol C, x and € denote the
subset, Cartesian product and member respectively in
ordinary set theory. And DOM(A;) = II(U;) U void.
II(U;), : = 1,2,...,m, are collections of all possibility
distributions on a universe of discourse U;, here void
is a special value to be interpreted as not yet defined,
meaning that when we know more we intend to fill in
the value. It is assumed that key attributes take or-
dinary nonfuzzy values and all uncertain relations are
finite. We would also like to have special symbols to
denote concepts like ‘unknown’ or ‘unavailable’, none
interpreted as no possibility for the value of an object
could exist, and unknown a possible possibility for any
value of an object.

Recall from [2&], the possibility distribution function
T A(z) associated with an attribute A of an object z is
defined as:

T A(z) U - [0, 1]

where U is a universe of discourse of A(z) and 7 4()(u)
represents the possibility that A(z) supposes value u
in . We use

Taz)(U) = {ma)(w) /w1, Tay(u2) /uz, ...,
WA(m)(Uj)/uj},
where u; € U,7 =1,2,...,n.

A tuple (t,p(t)) in an uncertain relation R means a
probability p(t) is associated with fact t. Conversely,
the probability of t not belonging to R is 1 — p(t).

URD stores uncertain data directly within
databases in order to handle the information more effi-
ciently than the system which poses uncertain queries
based on crisp data.

This paper largely explains how URD can be real-
ized. The complete aspects of theoretical background
are stated in [22, 26, 27, 23].

Uncertain Relational Algebra

The relational algebra operations are usually divided
into two groups [6, 10]: (a) mathematical set the-
ory operations: Union, Intersection, Difference and
Cartesian Product. (b) operations developed specif-
ically for relational databases: Select, Project and
Join. We must broaden them to uncertain relations.

Consider two distinctive n-ary uncertain relations
R and S in a universe of discourse U = {Uy x Uz x
el X unap}

Union

RUS = {maz(mr (ui), 7s(u:))/ui, (PR + Ps — prX
ps) i u; € Ui}, where i =1,2,...,n.

Intersection

RNS = {min(mr(ui), ms(ui))/ui, pr X ps u; € Ui}
where 1 = 1,2,...,n.

Difference

R - S = {maz((rr (wi) — 7s(wi)), 0)/ui, pr(1 = ps) :
u; € Ui}, wherei = 1,2,...,n and
— denotes ordinary subtraction.

Cartesian product

RXS:{t = (al,...,am,bl,...,bn),pnng:
a; € Uy, bj € V;,0<i<m,0<j <n},
where R € Uy x Uy x --- X U,, and
SeVI xVyx - xV,.

Selection

OC(Aiy Aig,.... Aik.o)(R) =
{typ(t) I sup[wuij (U)#A.-,. ('U.)] >0:
u€U,pt) eR,1>602>0,1<j <k},
where p is membership function of fuzzy set A;,,
6 threshold value and C k-ary predicate from
uil,ui2,-. .,uik.

Projection

Let R have attributes A,, As,..., A, the new re-
lation W is projection of R only onto attributes

Ai, Aigy ..o, Agy, where k < m, is defined as:
TA;, VAig Ay (R) = {W(An) Aiz’] Alkva(t)) :
pw(t) = pr(t),
{Ai,,.. ., A Y C{A),..., An}}.

Natural Join

Let m-ary R and n-ary S join over attributes
A,‘l,Ai:,...,Aik in R and Bil,Bi.z,...,Bi,, in § and
one threshold value 8, the natural join operation
which produces (m + n — k)-ary relation is defined
as:

R XA, A Biy By, O =
{t={(a1,...,am,b1,...,bs) — (ai,,...,ai,),
pr(t) X ps(t) : sup[min(ma, (u),7g, (u))] > 6,

—~129-—

built interactively with input from users wanting to
have little or no knowledge about perfect attribute
values of SQL.

4 More aspects of URDS

Datatype

Besides numerical type, the form of data represented
uncertain conception which is allowed to store as col-
umn values in Oracle tables is only character string
internal datatype. Others are for number, date or
tag. As a result, VARCHARZ2, variable-length char-
acter string, that length is less than 64K bytes, is
most suitable datatype. Tables below are the descrip-
tion and sample contents of relation students, where
the key attribute S_.ID which must not an uncertain
attribute specifies a constraint definition. This effect
is that only data which satisfies the constraint condi-
tion is stored to the table.

SQL> desc students

Name Null? Type

SID NOT NULL NUMBER(4)
S_.NAME VARCHAR2(10)
AGE VARCHAR2(20)
COURSE VARCHAR2(20)
PROBABILITY NUMBER(6,4)

SQL> select * from students;
... Please enter RETURN to continue ...

S.ID S_NA AGE COURSE PR
2104 Daniel about 30 none 9
2166 Anna 29 PhD 2
2289 Stefan void PhD or Master 1
1677 Karen 20o0r 21 void 8
2347 John unknown Undergraduate .5

Here S_NA stands for S NAME and PR for attribute
PROBABILITY attribute names.

All the above fuzzy attributes: about 30, 20 or
21 and unknown etc are defined by possibilistic dis-
tribution and saved at data library as {38, L, 92},
{55> 37} and Tage(onn)(w) = 1 where u € Ugg,.

Data Library

Data library consists of all the specification of data
written in structure, array and pointer type of C lan-
guage:

¢ finite attribute domains,

e every special value of designated elements in each
domain,

e fuzzy membership functions.

For competent practice, the ad hoc clarification for
individual application or user preferences could be
added directly into the library at any time.

The ability to dynamically scale the possibilistic
distribution enables meaningful uncertain information
processing for a much larger set of applications and
wider set of users, and reduces the amount of database
specific knowledge required from users.

Function Library
Function library mainly conduct:

e calculation of possibilistic distribution or proba-
bility values,

e predicates computing the grade value between
two uncertain data,

¢ extended connectives between two uncertain for-
mulas, such as A, V, and —, mean that the pred-
icate is true to the degree of 7,

e extended comparators which is an extension from
the arithmetic comparison operation (eg. =, #, <
1<, 25>,

¢ mathematical aggregate function on collections of
values from the database (eg. SUM, AVERAGE,
MAXIMUM, MINIMUM and COUNT),

¢ linguistic modifiers like very, more or less, quite
and of course uncertain relational algebra which
is mentioned at section 2.

All of the above is maintained as some archive files
written by C to form runtime function library.

Dynamic SQL

The dynamic SQL facility is designed exclusively for
supporting online applications. Our application could
be characterised by a great deal of variability, instead
of writing a specific SQL query for every possible con-
dition, we find it much more convenient to construct
parts of the SQL query dynamically at running time
and then to bind and execute them dynamically.

For example, the system just simply prompt users
for a search condition to be used in the WHERE
clause of a SELECT or DELETE statement. And
users could choose from menus listing SQL operations,
table names, column names, and so on. Therefore it
is an extremely flexible system.

With all methods, dynamic SQL statements must
be stored in a character string, which must be a host
variable !, that is the key to communication between
host program and Oracle, or quoted literal.

IOracle stores input data in database columns, and stores
output data in program host variables.

—130—

1€i<m,1<j<n1<I<k<morn,
Ai;, eui,Bu € Vj,ui =V, u, Eui}.

3 Overview of URDS

There are two most popular modes to originate front-
end of classical database systems. One is using an
‘add-on’ to traditional data, and it is exemplified by
[13, 14, 3, 4]. The other is that fuzzy data are saved
as string characters, one more step than the former to
directly store the uncertain information, then weight
calculation for uncertain information is considered af-
ter normal database retrieval. The latter is illustrated
by [29, 18, 17, 19].

Our work belongs to the second class which is
more effective though more complicated in uncer-
tainty management. To achieve uncertainty han-
dling, a pre-processing and post-processing system di-
agram was used in which pre-processing translates
queries with uncertain facts into classical counter-
parts, and post-processing in which maps acceptable
crisp queries resulting from database engine into user
friendly queries by reintroducing uncertainty from li-
braries.

The basic design of the URDS system can be seen
in the figure 1.

TRADITIONAL RELATIONAL DBMS {

it \
Query Results
Saved Data
T T T Ty
— | \ Weight

UNCERTAIN DB CALCULATOR
Data Library i
Function Library UncertainResul}
COMPOSER

M

(. —

UNCERTAIN QUERY PROCESSOR g posuts |
/

|
|{)B APPLICATIONwithUNCERTAIN QUER

Uncertain Que.

Figure 1: Architecture of URDS.

In the implementation, we pursue that the most im-
portant aspect is the simplicity, where the simplicity
without losing capacity of representation and manage-
ment. The URDS essentially consists of three parts:
database application programs, an uncertain query
processor and an ordinary relational database man-
agement system,

The database application programs are written in
a host language, where we pick C language. Tradi-
tional relational DBMS as back-end processor is Or-
acle V7.3.2. For the middle part: uncertain query
processor, we choose same host language C and em-
bedded SQL other than OCI (Oracle Call Interface)
for easy understanding the meaning of each embedded
statement. Besides, they are standard and broadly
used. Even there are convenient existing API calls to
the OCI library. This part allows all operations with
ordinary databases and is formed of following mod-
ules.

Uncertain Query Parser
compiles uncertain queries from the application
programs and generates modified intermediate
codes that could be linked and executed with li-
braries.

Classical Query Generator
produces optimum ordinary SQL codes by re-
solving calls from libraries to access the crisp
database system and sends to DBMS engine Or-
acle V7.

Uncertain DB Library

primarily contains two parts: Data library fa-
cilitates the ad hoc definition of fuzzy member-
ship functions, possibilistic distribution, some
special values and tuple grad values between
query conditions. Function library stores
all the extensive information about relational
scheme, data dictionary, relational operations
and predicate evaluation.

Weight Calculator
computes all possibility distributions, probabili-
ties, condition values given by libraries on con-
ventional SQL values to prepare uncertain query
results.

Uncertain Result Composer
formulates the results of uncertain SQL state-
ments for the application programs from the con-
ventional SQL ones through weight calculator.
Uncertain SQL derived tables are composed from
the ordinary tables plus uncertain information
from libraries.

Our URD is an intelligent database which is clarified
as a traditional relational database with additional
functionalities to incorporate natural languages, some
kinds of incomplete information [12, 8]. For sys-
tem that will require a natural language interface to
databases, dynamic adjustment of the search criteria
to the underlying database will be critical.

Consequently we support that URDS has open-
ended flexibility by host programs accepting and pro-
cessing dynamically defined SQL statements. It is

—-131-

Because of the possible complexities in program-
ming dynamic SQL, it has been known to scare away
the best of developers. But if planned and done in
phases and modules, even the most complex methods
can be fairly straightforward.

5 Conclusion

Fundamentally, all implementation for uncertainty
management in databases can be divided into
two groups: uncertainty querying in conventional
databases {18, 4, 13], which is simple, and uncertainty
querying in uncertain databases, which is believed in
managing uncertain data and queries more compe-
tently.

We compare URDS to the systems in [18, 16] then
expect that URDS has a new more user-friendly, easy-
to-use and generalised querying system. It is possible
to formulate queries concerning highly aggregate and
vague-defined concepts which are usually of interest
to human decision makers who cannot handle through
conventional database systems.

Intuitively, completeness in a query language is the
capability to capture all relationships. For a tradi-
tional relational database this entails the ability to
form any relation by combining operations. For un-
certain relational database, completeness also entails
a capability to specify any partition of a domain set of
formulas that is allowed by possibility and probability.
Additionally, it is able to define the uncertainty level
in any intermediate and resulting uncertain relations.

The implementation of URDS prototype is carried
out on three steps. 1) Uncertain database data and
function library are established initially without de-
pending on other resources. 2) Weight (likelihood)
calculator then classical query generator could be
built on libraries. 3) Realization of parser and com-
poser. We are now involving first and second steps
partially, while the rest of them will be dealt with
in forthcoming work. For that reason, performance
results are not available.

References

(1] BALDWIN, J. FRIL - a fuzzy relational inference
language. Fuzzy sets and systems 14 (1984), 155
174.

[2) BARBARA, D., GARciA-MoLINA, H., aND
PorTER, D. The management of probabilistic
data. IEEE Tran. Knowledge and Data Engi-
neering 4, 5 (1992), 487-502.

(3] Bosc, P., AND PIVERT, O. Fuzzy querying in
conventional databases. In Fuzzy Logic for the
Management of Uncertainty, L. A. Zadeh and

[5]

6

—

(9]

[10]

[11]

[14]

(15]

—132—-

J. Kacprzyk, Eds. John Wiley and Sons, New
York, 1992, ch. 32, pp. 645-671.

Bosc, P., AND PIvErT, O. SQLf: A relational

database language for fuzzy querying. IEEE
Trans. Fuzzy Systems 8, 1 (1995), 1-17.
BuckLEes, B., AND PETRY, F. Generalized

database and information systems. In Artificial
Intelligence and Decision Systems: Analysis of
Fuzzy Information, J. Bezdek, Ed., vol. III. CRC
Press, Boca Raton, FL, 1986, pp. 177-201.

Cobpb, E. Relational completeness of data base
sublanguages. In Data base system, R. Rustin,
Ed. Prentice-Hall, Englewood Cliffs, NJ, 1972,
pp- 65-98. Courant computer science symposium
6, May 24-25, 1971.

Copp, E. Extending the database relatonal
model to capture more meaning. ACM Trans.
Database System 4, 4 (1979), 397--434.

DeEMOLOMBE, R. Uncertainty in intelligent
databases. In Uncertainty Management in In-
formation Systems, A. Motro and P. Smets, Eds.
Kluwer Academic, Boston, 1997, ch. 4, pp. 89-
126.

DEY, D., AND SARKAR, S. A probabilistic re-
lational model and algebra. ACM Trans. on
Database Systems 21, 3 (sep. 1996), 339-369.

EvLmasri, R., AND NAVATHE, S. Funda-

mentals of database system, 2nd ed. Ben-
jamin/Cummings, Redwood City, CA, 1994.

FuHR, N., AND ROLLEKE, T. A probabilistic
relational algebra for the integration of informa-
tion retrieval and database systems. ACM Trans.
on Information Systems 15, 1 (Jan. 1997), 32-66.

GRANT, J. Logical introduction to databases.
Harcourt Brace Jovanovich, 1987.

KACPRZYK, J., AND ZADROZNY, S. Fquery
for access: Fuzzy querying for a windows-based
DBMS. In Fuzziness in Database Management
Systems, P. Bosc and J. Kacprzyk, Eds. Physica-
Verlag, Heidelberg, 1995, pp. 415-433.

KACPRZYK, J., AND ZADROZNY, S. Fuzzy
queries in microsoft access v.2. In Proceedings
of VI IFSA World Congress (Sao Paulo, 1995),
vol. 2, pp. 341-344.

LEE, S. Imprecise and uncertain informa-
tion in databases: An evidential approach. In
Proc. IEEE Int. Conf. Data Engineering (1992),
pp. 614-621.

[16]

[17)

18]

[19]

(20]

[21]

[22]

23]

24]

[25]

[26]

[27]

MEDINA, J., Pons, O., AND ViLa, M.
Gefred: A generalized model of fuzzy relational
databases. Information Sciences 76 (1994), 87—
109.

MEDINA, J., ViLA, M., CUBERO, J., AND
Pons, O. Towards the implementation of a gen-
eralized fuzzy relational database model. Fuzzy
Sets and Syst. 75 (1995), 273-289.

NakaJiMa, H., Socon, T., AND ARAa0, M.
Fuzzy database language and library — fuzzy ex-
tension to sql. In Procs. of second IEEE int. conf.
fuzzy systems (Piscataway, NJ, 1993), vol. I,
IEEE service center, pp. 477-482.

PeTrY, F. E. Fuzzy databases principles and
applications. Kluwer Academic, Norwell, Mas-
sachusetts, 1996.

PiTTARELLI, M. Probabilistic databases for de-
cision analysis. Int. J. Intelligent Systems 5
(1990), 209--236.

RaJu, K., AND MAJUMDAR, A. K. Fuzzy func-
tional dependencies and lossless join decomposi-
tion of fuzzy relational database systems. ACM
Trans. Database Systems 13, 2 (June 1988), 129-
166.

RAMER, A., AND Yu, H. Similarity, probabil-
ity and database organisation. In Proc. 1996
Asian Fuzzy System Symposium, Kenting, Tat-
wan (1996), pp. 272-277.

RAMER, A., AND YU, H. Semantics of dichoto-
mous probabilistic databases. In Proc. of Inter-
national Conference on Neural Information Pro-
cessing (ICONIP’97) (Dunedin, New Zealand,
1997), IEEE NNC and INNC, pp. 564-567.

ULLMAN. J. Principles of Database Systems.
Computer Science Press, Rockville, MD, 1983.

UMANO, M. Freedom-0: A fuzzy database sys-
tem. In Fuzzy Information and Decision Pro-
cesses, M. Gupta and E. Sanchez, Eds. North-
Holland, New York, 1982, pp. 339-347.

Yu, H., AND RAMER, A. A combined approach
to uncertain data analysis. In Advances in Intelli-
gent Data Analysis: Reasoning about Data, Proc.
of IDA97Y, LNCS 1280 (London, 1997), AAAI,
Springer-Verlag, pp. 123-134.

Yu, H., aAND RAMER, A. Uncertainty man-
agement in generalised relational databases. In
Procs. of European Congress on Intelligent Tech-
niques and Soft Computing (Aachen, Germany,
1997), vol. 2, ELITE, Verlag Mainz, pp. 1137-
1141.

(28] ZADEH, L. Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems 1, 1 (1978),
3-28.

[29] ZEMANKOVA, M., AND KANDEL, A. Implement-
ing imprecision in information systems. Informa-
tion Sciences 37 (1985), 107-141.

[30] ZimMANYI, E. Query evaluation in probabilistic
relational databases. Theoretical Computer Sci-
ence 171 (1997), 179-219.

—133—

