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Abstract

In this paper, we propose ancther paradigm(QNBP) to be capable of overcoming limitations of the traditional _bad<propagaﬁon(SDBF’). QNBP is
based on the method of Quasi-Newton(variable metric) with the nommalized direction vectors and computes step size through the linear search.
Simulation results showed that QNBP was definitely superior to both the stochastic SDBP and the determinisic SDBP in terms of accuracy and
rate of convergence and might surmount the problem of local minima. And there was no difference between DFP+SR1 and BFGS+SRt

ccmbined algorithms in QNBP.
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1. Introduction

The traditonar backpropagation method based on the steepest
descent method(here-after referred to as the SDBP) is not good
learning algorithm in terms of accuracy and rate of convergence.
Espedially, the mast serious problem in SDBP fraining is the existence
of local minima, where the eror at the network outputs may still be
unacceptably high. It is undeniable that most researchers have been
inclined to biindly accept this method for many subsequent years.

In this paper, we propose another paradigm to be capable of
overcoming limitations of SDBP. The proposed backpropagation
(here-after referred to as the QNBP) is based on the combined
Quasi-Newton method(or variable metric method) with the approximate
to step sizes. The temn "combined" implys that two rank-two updates
in Quasi-Newton methods can be combined with the symmetric
rank-one update.

To use the Newton-Raphson method we must know the Hessian
matrix of the function and we must invert it. In many cases induding
backpropagation model, the Hessian matices are not available, are
very expensive to compute. The variable metric method, originally
developed by Davidon(1], avoids these difficulties.

At current point x, & R", arbitrary function f(x) can be locally
approximated by the gquadratic form of Eg. (1) using Taylor series

f(xk)2b+a1'xk+ %XZH(XK)XK. H(Xk) >0 (1)
where H(x,) is the Hessian matrix of f(x,) .

f(x,) has the minimum point x,,, = —H(x,) 'a . From the

gradient vector g,, x.., can be computed in one step as

—H(x) 'a = —H(x,) (g, —MH(Xk)Xk)
—~H(x, ) g, + xy

Xyg+y =

it H(x,) ' is available.

The optimal direction of descent is along —H(x, ) ‘g, and not
along --g,. And H(x) ‘g, is the gradient of f(x,) when the
metric is given by Vx, H(x,)x.. In most cases, H(x,) is not
known. Therefore, this method estimates H(x,) ' successively by
constructing a sequence of matrices such that they are the inverse of

H(Xk\/‘
Quasi-Newton method.

The "Quasi" in Quasi-Newton method is because we don't use the
actual Hessian matrix, but instead use current approximation of it. This
is often better than using te wue Hessian. In short, the basic idea of

the Quasi-Newton methods is to build up, iteratively, a good estimate
to the inverse Hessian matrix.

Hence, the name of the variable metric method or

Quasi-Newton methods come in three main flavors; two rank-two
algonthms such as Davidon - Fletcher - Powell(DFP) algorithm(2],
Broyden - Fletcher - Goldfarb - Shanno(BFGS) algorithm({3,4,5,6] and
symmetric rank-one algorithm(SR1){7]. This three versions differ mainly
in choice of an estmate to the inverse Hessian matrix. The main
drawback of SR1 update is that an estimate to inverse Hessian at
next point may not be positive definite even when an estimate to
inverse Hessian at current point is positive definite.

However, the main advantage of SR1 update is that it requires less
amount of storage space and less amount of arithmetic operations in
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comparison 1o two rark-two updates such as DFP and BFGS updates.
Hence, it the fatal flaw of SR1 update could be overcome, this update
is the most adequate to the backpropagation model.

In this paper, two combined updates, DFP+SR1 and BFGS+SR1,
are applied to the backpropagation model. So, we intend to call this
another paradigm QNBP.

2. QNBP : Algorithm and step size

First, to describe QNBP algorithm, we introduce the following
notation.

[1] r —— = layer : input layer(0), hidden layer(1~(L —1)),
and outputlayer(L).
(2] p, k —— =*the p_th training data, the k_th iteration. :
1<p<P, k20
[3] N, —— = number of the r—layer nodes except bias term,
n, —— *the n,_th r—layer node.: 0 <n, <N (r =L)

and bias term, if n, = N,.

(4] Xpy, —— * value of the p_th training data to the
ny_th input layer node.
Yon, —— * value of the p_th training data to the
np_th output layer node.

[5] wha.,. dhn., —— * weight and direction on the connection

from the n..;_th (r—1)—layer node

to the n,_th r—layer node. : n, *+= N,

(6] net’,,. f% (net’,, ) —— * net value and output value of the
n,__th r—layer node for the p_th training data.

(7] %, (netly,) =
£, (net%,.)

L
nett, = Xpa —— *0p* Np

5,000 =1
15, ( Wi, ot (net 500))
£, ( Z‘\‘ (Whn fot(net izt ) + whn.,)

~-— *r*=(,n * N,

I

~— *qn, =]

Il

1, (net’,,.)

E(-) o gre -
[8] grn,nv-n = W = —Zogn.fnv-ln(netrnn}-n)
Wi, 2
d:',. (net’y,.)
P AL r ar+l r+1 e
85a = dnett. g’:\o{m,,lw mone T =0, L and
sL L
st = S0l (o (et )
n pn n
BNy dnet S T L LLIn
ro__ r T r
(8l wr= [w“'""‘]N,X(N.qﬁ-l)’ D (dan ']N.r(N..,ﬂ)'

G = [gaa-d g e, o0
-~ — * r—layer weight, direction and gradient matrix
rr#0,n, %N,
(10] Vec(A=[a;],,,) = [bnly,, ——
a maximum integer less than or equal to% and
0<shs(J-D,0<i<(I-D,0<i<{J-D.

«h = jI + i, where i is

(1} E

(8) = E(Vec(W!), Vec(W?), ..., Vec(WL))

3 T o~ 5 (Z whon (5 (D whil 2
...... W F o (W, £, (D W0, £0, (et ) DT

— — =* gbjective(error) function of the network. :

Wia., = 0(r+0,L)

JE(H)

dE(6)
3Vec(W') ]U,’

dVec(W")

(12

—

VE(8) = p = [ = Vec(G")

— - * gradient vector of E(8).
FE(9

(i3] H(O) =[Hwl .. Ha= Vec(W®) aVec(WH
=[ 3°E(8) ]
pxq

~ b a
ow Ayt aw LIRS

*—— x positive definite Hessian matrix. :
p = NIX(N3—3+1)- q = Nbx(Nh—1+ 1)
[14] Ixl = (<"

[15] 6" =[Vec{ W), ..., Vec(W"), Vec(W'* D), .., Vec(W"
A"={Vec(DY, ..., Vec(D"), Vec(D**h, ..., Vec(D)]IT
o' =[Vec(GY), ... Vec( G, Vec(G'™1), ..., Vec(GH]T

Zé" = g, Z/l' = A, Zp’ =p, r=
[16] <67 ={Vec™(WY), ..., VecT(W"), VecT(W'*D), ... VecT(W1)]

AT =[VecT(DY, ... VecT(D?, VecT(D™), ..., VecT(DM)]
T = Vee™(GY, ..., VecT(GT), VecT(G™Y), ... VecT(GY)]

Zw“f = 47, Z</1'>T =T, ¢ = o7, r#0
2.1 Algorithm

Let A, be an estimate of H(x,)~' at current point 4,.

in QNBP, the next point 4, ,, is generated from @, by the linear

search in the direction of A, and is expressed as

6k+1=‘9k+kak-k20

S S,
where A, = A, ol (— Ay px) ®

r, is a step size and we select it such that

Min, E(8¢4)) (4
= Min,, {E(6) + (o0 Tty + $ A0 TH(B) A7)

From Eg. (4),

T,
“‘<Pk> Ay

T T TR TH (0g) Ay

>0 )

Eq. (5) can be written as
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o~ 2(E(y) —E(8,)) © We can analytically derive the unique r, which safisfies two
5T e T+ <o T

properties and then use this as the good approximate to a true r, .

using Taylor series and 2’;]:_1 (or = Prot) = H(BeoDAro, - These two desirable properties are as follows.

One important feature of QNBP is the choice of matrices A« 0 [Property 1] 4, ., lies in a given direction 4, from 4, .

be positive definite and satisfying the following Quasi-Newton equation
[Property 2] E(8,) decrease log-linearly.

APk = Ak L . R .
in short, Eq. (6) satisfies the above-mentioned properties, it can be
where p, = py.) — o and Q = fyvy — Oy - @ written as

-

QNBP with DFP, BFGS and SR1 updates generates the sequence of

Bk
) 2(E, —Ey) h::’l' ,
A, (k = 1) respectively as = ST . < Uy (13)
Px k

A = A+ Qe _ _AcPkPr Ay ® _

K+l k alpy DEAka where U, is upper bound.

1 s A Dy T T T

Age1 = Ayt QIDk ((1+ quk )Qka — QxPx Ak_AkClkpk> ©) 3. Simulation example

Tabl
(qk"‘Aka)(Qk“Aka)T (See © 2)

A = A, + = 10
e+l * (ax — AxPx) Px (10)
3.1 First case : XOR problem
(See Tables 3, 4)
First combined algorithm, DFP+SR1, computes A, as follows
3.2 Secocid case : Evaluation of Rosenbrock function vaiue
Aver = EQ.(10)  if (qx — Aepe) D > 0 (See Tables 3, 5)
= Ea.(8) if (ax —Axpi) Dk <0 and agpe >0 (1)
= sl otherwise [Table 2] Input parameters
SDBpP QNBP
where [ is identity matnix and s is a given positive constant Simulation | Momentum Initial
Step Size Type U, s
Second combined algorithm, BFGS+SR1, computes A, ,, as follows -Rate | Temperature
1 1.0 0.5 0 | ar 1.0 1.0
2 1.0 0.5 0.001 s 0.5 1.0
Awer = Eq.(10)  if (ax - Ao >0 . 3 - 0.5 0.25 0 d 0.3 1.5
=Eq.(9) if (ax —ADx) P <0 and arpy > 0 (12) 4 0.5 0.25 0.001 S 0.2 2.0
= sl otherwise 5 0.3 0.15 0 d [ 015 | 20
6 0.3 0.15 0.001 S 0.1 2.0
7 0.2 0.1 0 d
Ad Ay =1 8 0.2 01 | 0.001 s

Note that Eq. (11) and (12) check whether the seguence of * . deterministic ** : stochastc
A,(k = 1) are positive definite. Thus we are led to consider an
algorithm, that is, QNBP which have two versions, DFP+SR1 and [120/ 3] Simulaion environment in two cases

First Train- |
BFGS+SA1. Input Hidde Output| Output | Error | Max. | Initial |
U n I
Nodes Nodes | Function | Level {iteration{Weights "
2.2 Step size Nodes Data
1_st
- 2 2 1 sigmoid | 1E-12] 3000 n* 4 !
Eg. (6) may not be a directly available expression since we must Case

2_nd . . [
estmate p,,, and E(8,,,) . For this reason, we will grant wo |~ o1 14 10 7 | sigmoid | 1E-12| 5000 n | ZOJ

desirable properties to r, with the purpose of a successful training. *  normalized
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[Table 4] Simulation results of 1_st case, XOR probiem

QNBP
SoBP
. . (DFP+SR1 AND BFGS+SR1)
Simulation
Run . Run .
Iterations Error lterations Ermor
Time Time
1 0.77 3000 |0.00050596986 | 0.33 500 0.000000000000
2 0.77 3000 0.00051034391| 0.27 400 0.000000000000
3 0.77 3000 |0.00224905702 | 0.33 500 0.000000000000
4 0.77 3000 {0.00223123349| 0.33 500 0.000000000000
5 0.77 3000 }0.00853072653| 0.33 500 0.000000000000
8 0.77 3000 }0.00825091817 | 0.49 700 0.000000000000
7 0.77 3000 | 0.09576089606
8 Q.77 3000 | 0.08420768138

{Table 5] Simulation resutts of 2_nd case, Rasenbrock function evaluation

SDBP QNBP
Simulation {OFP+SR1 AND BFGS+SR1)
Run . Run .
Iterations Error lterations Eror

Time Time
1 61.48| 5000 ]0.00485882260(133.0/ 1000 |0.000000000001
2 61.48] 5000 10.00144454306|292.5| 2200 |0.000000000001
3 61.48| 5000 |[0.00450409402!412.0f 3100 |0.000000000001
4 61.48] 5000 |0.00462669594 |465.4| 3500 0.000000000001
5 61.48 5000 |0.00764988971[531.21| 4000 | 0.000000000001
] 61.48 5000 [0.00752127151611.76] 4600 | 0.000000000001
7 61.48 5000 | 0.01256565752
8 | 61.48 5000 | 0.01190128557

4. Concluing remarks

From simulation results, compared with SDBP, QNBP has three
major advantages. These are as follows.
@ QNBP is by far general, i.e., SDBP Is a special case of QNBP
( Ay =1 VYV k)
@ QNBP is definitely superior to SDBP in terms of accuracy and
rate of convergence.
3 QNBP may surrnount the problem of local minima.
And
D In large scale problem, QNBP is time-consuming.
@ There was no difference between DFP+SR1 and BFGS+SR1
combined algorithms in QNBP.
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