FUZZY L-CONVERGENCE SPACES

Kyung Chan MIN

Dept. of Mathematics, Yonsei University

Seoul, 120-749 Korea

Tel:82-2-361-2591 Fax:82-2-392-6634 E-mail:kcmin@bubble.yonsei.ac.kr

Abstract

A notion of 'fuzzy' convergence of filters on a set is introduced. We show that the collection of fuzzy L-limit spaces forms a cartesian closed topological category and obtain an interesting relationship between the notions of 'fuzzy' convergence structure and convergence approach spaces.

Keywords: fuzzy L-limitierung, cartesian closed, convergence M-approach structure.

1. Introduction

The gap between mathematical model and physical reality was one of main concern to many researchers for a long time. K.Menger was the first to consider this problem, consequently introducing the concept of statistical (probabilistic) metric spaces [11]. Since then, probabilistic metric and topological spaces have been studied extensively. In probability, statistics and analysis, many types of convergence was known to be non-topological. In 1989, Florescu [6] initiated a sutdy of 'probabilistic convergence structures' based on net convergence. Richardson and Kent [14] introduced a filter formulation of this theory. Herrlich and Zhang [8] studied some categorical properties of probabilistic convergence spaces. On the other hand, R.Lowen [10] introduced a notion of approach space as a generalization of the notions of topological space and metric space and E.Lowen and R.Lowen [9] introduced a notion of convergence approach space understanding convergence spaces and metric spaces as entities of the same kind.

Many researchers studied on the convergence of prefilters or fuzzy filters on a set. (see [4,12]) In this paper we introduce a notion of 'fuzzy' convergence of filters on a set as a generalization of probabilistic convergence structure in [8] and obtain some

basic categorical properties. Moreover, we show that the notions of 'fuzzy' convergence structure and convergence approach structure are equivalent in a certain case.

2. Fuzzy L-limitierung

Let L be a complete Heyting algebra with a top element 1 and a bottom element 0. For a set X, F(X) is the collection of all filters on X.

Definition 2.1. Let X be a set. A map $l: F(X) \times X \to L$ is called a fuzzy L-limitierung on X if it satisfies the following conditions:

- (1) $l(\dot{x}, x) = 1$ for all $x \in X$.
- (2) if $\mathcal{F} \subseteq \mathcal{G}$, then $l(\mathcal{F}, x) \leq l(\mathcal{G}, x)$ for all $x \in X$.
- (3) for $\mathcal{F}, \mathcal{G} \in F(X), l(\mathcal{F}, x) \wedge l(\mathcal{G}, x) \leq l(\mathcal{F} \cap \mathcal{G}, x)$.

The pair (X, l) is called a fuzzy L-limit space.

Definition 2.2. A map $f:(X,l)\to (Y,m)$ between fuzzy L-limit spaces is said to be continuous if

$$l(\mathcal{F}, x) \le m(f(\mathcal{F}), f(x))$$

for all $(\mathcal{F}, x) \in F(X) \times X$.

We form a category \underline{FLlim} consisting of all fuzzy L-limit spaces and all continuous maps between them.

Remark. 1. If $L = \{0,1\}$, then $\underline{FLlim} = \underline{Lim}$, the category of limit spaces and continuous maps.

2. If L = [0, 1], a fuzzy L-limit space means a probabilistic limit spaces [4].

Theorem 2.3. The category <u>FLim</u> is topological.

Proof. Let X be a set and $(X_{\alpha}, l_{\alpha}) \in \underline{FLlim}$ for each $\alpha \in \Lambda$. Let $f_{\alpha} : A \to (X_{\alpha}, l_{\alpha})$ be a map for each $\alpha \in \Lambda$. Define $l : F(X) \times X \to L$ by $l(\mathcal{F}, x) = \inf_{\lambda} l_{\alpha}(f_{\alpha}(\mathcal{F}), f(x))$. Then $l(\dot{x}, x) = 1$. Let $\mathcal{F} \subseteq \mathcal{G}$ in f(X). Then

$$l(\mathcal{F}, x) = \inf_{\lambda} l_{\alpha}(\mathcal{F}, f_{\alpha}(x))$$

$$\leq \inf_{\lambda} l_{\alpha}(f_{\alpha}(\mathcal{G}), f_{\alpha}(x))$$

$$= l(\mathcal{G}, x).$$

Hence $(X, l) \in \underline{FLlim}$.

Let $(Z, m) \in \underline{FLlim}$ and $g: Z \to X$ be a map. Suppose $f_{\alpha} \circ g$ is continuous for all $x \in \Lambda$. Then $m(A, z) \leq l_{\alpha}(f_{\alpha}(g(A)), f_{\alpha}(g(z)))$ for each $(A, z) \in F(Z) \times Z$ and $\alpha \in \Lambda$. Hence $m(A, z) \leq l(g(A), g(z))$.

We note that the category \underline{FLlim} satisfies the fibre small condition and it has the terminal separator property.

Remark 1. Let $\{(X_i, l_i)\}_I$ be a family of fuzzy L-limit spaces. Let $l: F(\prod_I X_i) \times \prod_I X_i \to L$ be a map defined by

$$l(\mathcal{H},(x_i)) = l_i(\prod_i \pi_i(\mathcal{H}), x_i).$$

Then l is the fuzzy L-limitiering for the product space $\prod_I X_i$ in \underline{FLlim} .

Theorem 2.4. The category <u>FLlim</u> is cartesian closed.

Proof. For (X, l) and (Y, m) in \underline{FLlim} , let C(X, Y) be the set of all continuous maps between them. For each $\mathcal{L} \in F(C(X, Y))$ an $f \in C(X, Y)$, let $u(\mathcal{L}, f) = \sup\{\alpha \in L | l(\mathcal{A}, x) \wedge \alpha \leq m(\mathcal{L}(\mathcal{A}), f(x)) \text{ for all } (\mathcal{A}, x) \in F(X) \times X\}$. Note that $l(\mathcal{A}, x) \wedge u(\mathcal{L}, f) \leq m(\mathcal{L}(\mathcal{A}, x))$ for all $(\mathcal{A}, x) \in F(X) \times X$. Clearly, $u(\dot{f}, f) = 1$. Let $\mathcal{L}_1 \subseteq \mathcal{L}_2 \in F(C(X, Y))$, then from the formula $l(\mathcal{A}, x) \wedge \alpha \leq m(\mathcal{L}_1(\mathcal{A}), f(x)) \leq m(\mathcal{L}_2(\mathcal{A}), f(x))$, it is clear to see that $u(\mathcal{L}_1, f) \leq u(\mathcal{L}_2, f)$ for all $f \in C(X, Y)$.

Let $\mathcal{L}_1, \mathcal{L}_2 \in F(C(X,Y))$ and $f \in C(X,Y)$. Let $\alpha_1, \alpha_2 \in L$ satisfying the following

$$l(\mathcal{A}, x) \wedge \alpha_1 \leq m(\mathcal{L}_1(\mathcal{A}), f(x))$$

and

$$l(\mathcal{A}, x) \wedge \alpha_2 \leq m(\mathcal{L}_2(\mathcal{A}), f(x))$$

for all $(A, x) \in F(X) \times X$. Then

$$l(\mathcal{A}, x) \wedge (\alpha_1 \wedge \alpha_2) \leq m(\mathcal{L}_1(\mathcal{A}), f(x)) \wedge m(\mathcal{L}_2(\mathcal{A}), f(x))$$
$$\leq m(\mathcal{L}_1(\mathcal{A}) \cap \mathcal{L}_2(\mathcal{A}), f(x))$$
$$= m((\mathcal{L}_1 \cap \mathcal{L}_2)(\mathcal{A}), f(x))$$

for all $(A, x) \in F(X) \times X$. Therefore it is easy to check that $u(\mathcal{L}_1, f) \wedge u(\mathcal{L}_2, f) \leq u(\mathcal{L}_1 \cap \mathcal{L}_2, f)$. Therefore $(C(X, Y), u) \in \underline{FLlim}$.

Let $\mathcal{H} \in F(X \times C(X,Y))$ and k be the fuzzy L-limitierung for the product space $X \times C(X,Y)$. Then

$$k(\mathcal{H}, (x, f)) = l(\pi_1(\mathcal{H}), x) \wedge u(\pi_2(\mathcal{H}), f)$$

$$\leq m(\pi_2(\mathcal{H})(\pi_1(\mathcal{A})), f(x))$$

$$\leq m(ev(\mathcal{H}), f(x)).$$

Hence $ev: X \times C(X,Y) \to Y$ is continuous. Let $h: (X,l) \times (Z,m) \to (Y,m)$ be a map in \underline{FLlim} . Define $h^*: (Z,m) \to (C(X,Y),u)$ by $h^*(z)(x) = h(x,z)$. Since \underline{FLlim} has the terminal separator property, $h^*(z) \in C(X,Y)$ for all $z \in Z$. Take any $(\mathcal{G},z) \in F(Z) \times Z$ and $(\mathcal{A},x) \in F(X) \times X$. Since h is continuous,

$$l(\mathcal{A}, x) \wedge n(\mathcal{G}, z) \le m(h(\mathcal{A} \times \mathcal{G}), h(x, z))$$
$$= m(h^*(\mathcal{G})(\mathcal{A}), h^*(z)(x)).$$

Hence $n(\mathcal{G}, z) \leq u(h^*(\mathcal{G}), h^*(z))$. Therefore h^* is continuous. The uniqueness of such a map h^* is obvious.

If we take L = [0, 1], then we have the following.

Corollary 2.5. [8] The category $\underline{P-Lim}$ of probabilistic limit spaces is a cartesian closed topological category.

3. Convergence M-approach spaces

Let M be a complete Heyting algebra.

Definition 3.1. A convergence M-approach limit λ on a set X is a function $\lambda : \mathcal{F}(X) \to M^X$ satisfying the following conditions:

- A1) For any $x \in X$, $\lambda(\dot{x})(x) = 0$.
- A2) If $\mathcal{F} \subseteq \mathcal{G}$, then $\lambda(\mathcal{G}) \leq \lambda(\mathcal{F})$.
- A3) For all $\mathcal{F}, \mathcal{G} \in \mathcal{F}(X)$, $\lambda(\mathcal{F} \cap \mathcal{G}) \leq \lambda(\mathcal{F}) \vee \lambda(\mathcal{G})$.

The pair (X, λ) is called a convergence M-approach space.

Definition 3.2. A map $f:(X,\lambda)\to (Y,\delta)$ between convergence M-approach space is called a *contraction* if $\delta(f(\mathcal{F}))\circ f\leq \lambda(\mathcal{F})$.

We form a category CMAP of all convergence M-approach spaces and all contractions.

Note that a convergence M-approach limit λ on a set X can be considered as a map $\lambda : \mathcal{F}(X) \times X \to M$ if we put $\lambda(\mathcal{F}, x) = \lambda(\mathcal{F})(x)$ for each $(\mathcal{F}, x) \in \mathcal{F}(X) \times X$. Hence it is easy to see that the notion of a fuzzy L-limitierung on a set X is equivalent to the notion of a convergence M-approach limit if there is an order-reversing isomorphism between L and M. Therefore we have the following.

Theorem 3.3. The category \underline{CMAP} is isomorphic to the category \underline{FLlim} , if there is an order-reversing isomorphism between M and L.

Clearly, there are many interesting order-reversing isomorphism between $[0, \infty]$ and [0, 1].

Corollary 3.4. [1] The category \underline{CAP} of convergence approach spaces and the category P-Lim of probabilitic limit spaces are isomorphic.

Remarks 1. The numerical scales [0,1] and $[0,\infty]$ have some interesting relationships. In fact, they generate the notions of fuzzy set and toll set [3]. Min and Park [13] showed that the category of fuzzy sets and the category of toll sets are isomorphic as a topos.

2. We note that the category CAP is a quasitopos containings the categories CONV, of convergence spaces, and MET, of metric spaces as nicely embedded subcategories. (See [9]). On a separate paper we will discuss about whether the categories FLlim and CMAP are also quasitopos and some categorical relationships among intersting categories.

References

- P.Brock and D.C.Kent, "Approach spaces, Limit tower spaces, and Probabilistic Convergence spaces", Applied Categorical Structures, V.5, No.2 (1997), 99-110.
- 2. P.Brock and D.Kent, "On convergence approach spaces", Applied Categorical Structures, V.6, No.1 (1998), 117-125.
- 3. D.Dubois and H.Prade, "Tolls sets", Proc. IFSA '91, Brusels, Artificial Intelligence (1991), 21-24.
- 4. P.Eklund and W.Gähler, "Contributions to fuzzy convergence", Recent Developments of General Topology and its Applications, Academic Verlag (1992), 118-123.
- 5. H.R.Fisher, "Limesräume", Math. Ann. 137 (1959), 269-303.

- L.C.Florescu, "Probabilistic convergence structures", Aequationes Math. 38 (1989), 123-145.
- 7. H.Herrlich, "Cartesian closed topological categories", Math. Collog. Univ. Cape Town 9 (1974), 1-16.
- 8. H.Herrlich and D.Zhang, "Categorical properties of probabilistic convergence spaces", preprint.
- 9. E.Lowen and R.Lowen, "A quasitiopos containing *CONV* and *MET* as full subcategories", Intl. J. Math. Math. Sci. 11 (1988), 417-438.
- R.Lowen, "Approach spaces: A common supercategory of TOP and MET".
 Math. Nachr. 141 (1989), 183-226.
- 11. K.Menger, "Stastical metrics", Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535-537.
- 12. K.C.Min, "Fuzzy limit spaces", Fuzzy Sets and Systems 32 (1989), 343-357.
- K.C.Min and J.W.Park, "Relations between toll sets and fuzzy sets", Proc. AFSS '93, Sincapore (1993).
- G.D.Richardson and D.C.Kent, "Probabilistic convergence spaces", J. Austral. Math. Soc. (Series A) 61 (1996), 400-420.