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Abstract

A notion of ‘fuzzy’ convergence of filters on a set is introduced. We show
that the collection of fuzzy L-limit spaces forms a cartesian closed topological
category and obtain an interesting relationship between the notions of ‘fuzzy’
convergence structure and convergence approach spaces.
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1. Introduction

The gap between mathematical model and physical reality was one of main concern
to many researchers for a long time. K.Menger was the first to consider this problem,
consequently introducing the concept of statistical (probabilistic) metric spaces [11].
Since then. probabilistic metric and topological spaces have been studied extensively.
In probability, statistics and analysis, many types of convergence was known to be
non-topological. In 1989, Florescu [6] initiated a sutdy of ‘probabilistic convergence
structures’ based on net convergence. Richardson and Kent [14] introduced a filter
formulation of this theory. Herrlich and Zhang [8] studied some categorical properties of
probabilistic convergence spaces. On the other hand, R.Lowen [10] introduced a notion
of approach space as a generalization of the notions of topological space and metric
space and E.Lowen and R.Lowen [9] introduced a notion of convergence approach space
understanding convergence spaces and metric spaces as entities of the same kind.

Many researchers studied on the convergence of prefilters or fuzzy filters on a set.
(see [4,12]) In this paper we introduce a notion of ‘fuzzy’ convergence of filters on a

set as a generalization of probabilistic convergence structure in [8] and obtain some



basic categorical properties. Moreover, we show that the notions of *fuzzy’ convergence

structure and convergence approach structure are equivalent in a certain case.
2. Fuzzy L-limitierung

Let L be a complete Heyting algebra with a top element 1 and a bottom element 0.
For a set X, F(X) is the collection of all filters on X.

Definition 2.1. Let X beaset. Amap!: F(X)xX — Liscalled a fuzzy L-limitierung
on X if it satisfies the following conditions:

(1) (z,2) =1forall r € X.

(2) f FCG, then I(F,z) <l(G,z) forall x € X.

(3) for F, G € F(X),l(F,z) ANl(G,z) SUFNG,z).

The pair (X,1) 1s called a fuzzy L-limit space.

Definition 2.2. A map f: (X,!) — (Y, m) between fuzzy L-limit spaces is said to be

continuous if

HF,z) <m(f(F). fz))
for all (F,z) e F(X) x X.

We form a category FLlim consisting of all fuzzy L-limit spaces and all continuous

maps between them.

Remark. 1. If L = {0.,1}, then FLlim = Lim, the category of limit spaces and

continuous maps.

2. If L =[0,1], a fuzzy L-limit space means a probabilistic limit spaces [4].
Theorem 2.3. The category FLim is topological.

Proof. Let X be a set and (X4.ly) € FLIim for each « € A. Let fa 1 A= (Xanla)
be a map for each o € A. Define [ : F(X) x X — L by [(F,z) = infy lo(fo(F). fla)).
Then {(&.2) = 1. Let F C G in f(X). Then

UF.x) = inf lo(F, fa(x)
< igfla(fa(g)., fa(x))
=1(G, x).
Hence (X,1) € FLlim.
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Let (Z.m) € FLim and g : Z — X be a map. Suppose f, o g is continuous for all
v € A Then m(A, z) <Ila(falglA)), falg(z))) for each (A,z) € F(Z) x Z and a € A.
Hence m(A.z) <l(g(A).g(z)).

We note that the category F.Llim satisfies the fibre small condition and it has the

terminal separator property.

Remark 1. Let {(X,,l;)}s be a family of fuzzy L-limit spaces. Let [ : F([]; X;) x
[I; Xi = L be a map defined by

UH, (@) = (] ] mi(H), 20).

Then [ is the fuzzy L-limitierung for the product space []; X; in FLlim.
Theorem 2.4. The category FLlim 1is cartesian closed.

Proof. For (X.1) and (Y,m) in FLLim, let C(X,Y) be the set of all continuous maps
between them. For each £ € F(C(X,Y)) an f € C(X.Y), let u(L, f) = sup{a €
LI{A. x)Aa <m(L(A), f(x)) for all (A,z) € F(X)xX}. Note that (A, z)Au(L, f) <
m(L(A.x)) for all (A, 2) € F(X)x X. Clearly, u(f, f) = 1. Let £; C £, € F(C(X.Y)),
then from the formula I(A, x) Aa < m(Ly(A), f(x)) < m(La(A), f(x)), it is clear to see
that w(Ly. f) < u(Ly, f) for all f € C(X.Y).

Let £.L, € F(C(X,Y)) and f € C(X,Y). Let a1, 03 € L satisfying the following

I{(A.x) A e <m(Li(A), f(z))
and
(A, z) Naz <m(L2(A), f(x))
for all (A.z) € F(X) x X. Then
I{A, &) Alar Aaz) <m(Li(A), f(z)) Am(L2(A), fx))
<m(Li(A) N La2(A), f(x))
=m((£1 N Ly)(A). f(x))

for all (A.x) € F(X) x X. Therefore it is easy to check that u(L;,f) A u(Ls. f) <
(L1 N Ly, f). Therefore (C(X.Y),u) € FLIim.



Let H € F(X x C(X.Y)) and k be the fuzzy L-limitierung for the product space
N x C(X.Y). Then

k(M. (x, f)) = U{m(H),x) Aulme(H), )
< m(ma(H)(m1(A)). f(2))

< m(ev(H), f(x)).

Hence ev : X x C(X,Y) — Y is continuous. Let h : (X,1) x(Z,m) — (Y.m) be a map in
FLlim. Define h* : (Z,m) = (C(X,Y),u) by h*(z)(x) = h(x,z). Since FLlumn has the
terminal separator property, h*(z) € C(X,Y ) for all = € Z. Take any (G,z) € F(Z)x Z
and (A, r) € F(X) x X. Since A is continuous,

(A, z) An(G,z) <m(h(A xG), h(z,z))
=m(h*(G)(A), h"(z)(x)).
Hence n(G, z) < u(h*(G),h*(z)). Therefore h* is continuous. The uniqueness of such a
map h* is obvious.
If we take L = [0, 1], then we have the following.

Corollary 2.5. [8] The category P—Lim of probabilistic limit spaces 1s a cartesian

closed topological category.

3. Convergence M-approach spaces

Let M be a complete Heyting algebra.

Definition 3.1. A convergence M-approach limit X on a set X is a function \ : F(X) —
MY satisfying the following conditions:

Al) For any € X, A(#)(z) = 0.

A2) If F C G, then MG) < A(F).

A3) Forall F.G € F(X), M(FNG) < MF)VAG).

The pair (X. A) is called a convergence M -approach space.

Definition 3.2. A map f: (X.)\) = (Y.d) between convergence M-approach space is
called a contraction if §(f(F)) o f < A(F).

We form a category CMAP of all convergence M-approach spaces and all contractions.



Note that a convergence M-approach limit A on a set X can be considered as a map
A F(X) x X —» M if we put A(F,x) = A(F)(x) for each (F,r) € F(X) x X. Hence
it is easy to see that the notion of a fuzzy L-limitierung on a set X is equivalent to the
notion of a convergence M-approach limit if there is an order-reversing isomorphism

between L and M. Therefore we have the following.

Theorem 3.3. The category CMAP is 1somorphic to the category FLlim, if there is

an order-reversing isomorphism between M and L.

Clearly. there are many interesting order-reversing isomorphism between [0, oo and

[0.1].

Corollary 3.4. [1] The category C AP of convergence approach spaces and the category

P—Lim of probabilitic limit spaces are isomorphic.

Remarks 1. The numerical scales [0, 1] and [0, co] have some interesting relationships.
In fact, they generate the notions of fuzzy set and toll set [3]. Min and Park [13] showed
that the category of fuzzy sets and the category of toll sets are isomorphic as a topos.
2. We note that the category C AP is a quasitopos containings the categories CONV,
of convergence spaces, and M ET, of metric spaces as nicely embedded subcategories.
(See [9]). On a separate paper we will discuss about whether the categories FLlim
and CMAP are also quasitopos and some categorical relationships among intersting

categories.
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