PRODUCTS OF T-FUZZY FINITE STATE MACHINES

Jae-Gyeom Kim^a and Sung-Jin Cho^b

a: Department of Mathematics, Kyungsung University
 Pusan 608-736, South Korea
 Tel:+82-51-620-4612 E-mail: jgkim@star.kyungsung.ac.kr

 b: Department of Applied Mathematics, Pukyong National University Pusan 608-737, South Korea
 Tel:+82-51-620-6323 E-mail: sjcho@dolphin.pknu.ac.kr

Abstract.

We introduce the concepts of coverings, direct products, cascade products and wreath products of T-fuzzy finite state machines and investigate their algebraic structures.

Keywords: fuzzy finite state machine, T-fuzzy finite state machine, covering, restricted direct product, full direct product, cascade product, wreath produc

1. Introduction

Since Wee [8] in 1967 introduced the concept of fuzzy automata following Zadeh [9], fuzzy automata theory has been developed by many researchers. Recently Malik et al. [4-6] introduced the concepts of fuzzy finite state machines and fuzzy transformation semigroups based on Wee's concept [8] of fuzzy automata and related concepts and applied algebraic technique. Cho et al. [2,3] introduced the notion of a T-fuzzy finite state machine that is an extension of a fuzzy finite state machine. Even if T = w, our notion is different from the notion of Malik et al. [5]. In this paper, we introduce the concepts of coverings, restricted direct products, full direct products, cascade products and wreath products of T-fuzzy finite state machines that are generalizations of crisp concepts in algebraic automata theory and investigate their algebraic structures.

For the terminology in (crisp) algebraic automata theory, we refer to [1].

2. T-fuzzy finite state machines

Definition 2.1 [3] A triple $\mathcal{M} = (Q, X, \tau)$ where Q and X are finite nonempty sets and τ is a fuzzy subset of $Q \times X \times Q$, i.e., τ is a function from $Q \times X \times Q$ to [0, 1], is called a fuzzy finite state machine if $\sum_{q \in Q} \tau(p, a, q) \leq 1$ for all $p \in Q$ and $a \in X$. If $\sum_{q \in Q} \tau(p, a, q) = 1$ for all $p \in Q$ and $a \in X$, then \mathcal{M} is said to be complete.

Note that our notion of a fuzzy finite state ma-

chine is different from the notion of a fuzzy finite state machine of [5] that also is a generalization of the notion of a (crisp) state machine.

Let $\mathcal{M} = (Q, X, \tau)$ be a fuzzy finite state machine. Then Q is called the set of states and X is called the set of input symbols. Let X^+ denote the set of all words of elements of X of finite length.

Definition 2.2 [7] A binary operation T on [0, 1] is called a t-norm if

- (1) T(a,1) = a,
- (2) $T(a,b) \leq T(a,c)$ whenever $b \leq c$,
- (3) T(a,b) = T(b,a),
- (4) T(a, T(b, c)) = T(T(a, b), c)

for all $a, b, c \in [0, 1]$.

The maximum and minimum will be written as \vee and \wedge , respectively. T is clearly \vee -distributive, i.e., $T(a \vee b, c) = T(a, c) \vee T(b, c)$ for all $a, b, c \in [0, 1]$. Define T_0 on [0, 1] by $T_0(a, 1) = a = T_0(1, a)$ and $T_0(a, b) = 0$ if $a \neq 1$ and $b \neq 1$ for all $a, b \in [0, 1]$. Then \wedge is the greatest t-norm on [0, 1] and T_0 is the least t-norm on [0, 1], i.e., for any t-norm T, $\wedge (a, b) \geq T(a, b) \geq T_0(a, b)$ for all $a, b \in [0, 1]$.

T will always mean a t-norm on [0,1]. By an abuse of notation we will denote $T(a_1, T(a_2, T(\cdots, T(a_{n-1}, a_n)\cdots)))$ by $T(a_1, \cdots, a_n)$ where $a_1, \cdots, a_n \in [0, 1]$. The legitimacy of this abuse is ensured by the associativity of T (Definition 2.2(4)).

Definition 2.3 [3] Let $\mathcal{M} = (Q, X, \tau)$ be a fuzzy finite state machine. Define $\tau^+: Q \times X^+ \times Q \to$

[0,1] by

$$\tau^{+}(p, a_{1} \cdots a_{n}, q)$$

$$= \forall \{T(\tau(p, a_{1}, r_{1}), \tau(r_{1}, a_{2}, r_{2}), \cdots, \tau(r_{n-2}, a_{n-1}, r_{n-1}), \tau(r_{n-1}, a_{n}, q)) | r_{i} \in Q\}$$

where $p, q \in Q$ and $a_1, \dots, a_n \in X$. When T is applied to \mathcal{M} as above, \mathcal{M} is called a T-fuzzy finite state machine.

Proposition 2.4 [3] Let (Q, X, τ) be a T-fuzzy finite state machine. Then

$$\tau^+(p, xy, q) = \bigvee \{ T(\tau^+(p, x, r), \tau^+(r, y, q)) \mid r \in Q \}$$
 for all $p, q \in Q$ and $x, y \in X^+$.

3. Coverings

Definition 3.1 Let $\mathcal{M}_1 = (Q_1, X_1, \tau_1)$ and $\mathcal{M}_2 =$ (Q_2, X_2, τ_2) be T-fuzzy finite state machines. If $\xi: X_1 \to X_2$ is a function and $\eta: Q_2 \to Q_1$ is a surjective partial function such that $\tau_1^+(\eta(p), x, \eta(q)) \leq$ $\tau_2^+(p,\xi(x),q)$ for all p,q in the domain of η and $x \in X_1^+$, then we say that (η, ξ) is a covering of \mathcal{M}_1 by \mathcal{M}_2 and that \mathcal{M}_2 covers \mathcal{M}_1 and denote by $\mathcal{M}_1 \leq \mathcal{M}_2$. Moreover, if the inequality turns out equality whenever the left hand side of the inequality is not zero [resp. the inequality always turns out equality], then we say that (η, ξ) is a strong covering [resp. a complete covering] of \mathcal{M}_1 by \mathcal{M}_2 and that \mathcal{M}_2 strongly covers [resp. completely covers] \mathcal{M}_1 and denote by $\mathcal{M}_1 \leq_s \mathcal{M}_{\in}$ [resp. $\mathcal{M}_1 \leq_c \mathcal{M}_2$].

In Definition 3.1, we abused the function ξ . We will write the natural semigroup homomorphism from X_1^+ to X_2^+ induced by ξ by ξ also for convenience sake. We give an example that is elementary and important.

Example 3.2 Let $\mathcal{M} = (Q, X, \tau)$ be a T-fuzzy finite state machine. Define an equivalence relation \sim on X by $a \sim b$ if and only if $\tau(p, a, q) =$ au(p,b,q) for all $p,q\in Q$. Construct a T-fuzzy finite state machine $\mathcal{M}_1 = (Q, X/\sim, \tau^{\sim})$ by defining $\tau^{\sim}(p,[a],q) = \tau(p,a,q)$. Now define $\xi: X \to X/\sim$ by $\xi(a) = [a]$ and $\eta = 1_Q$. Then (η, ξ) is a complete covering of \mathcal{M} by \mathcal{M}_1 clearly.

Proposition 3.3 Let \mathcal{M}_1 , \mathcal{M}_2 and \mathcal{M}_3 be T-fuzzy finite state machines. If $\mathcal{M}_1 \leq \mathcal{M}_2$ [resp. $\mathcal{M}_1 \leq_s$ $\mathcal{M}_2, \ \mathcal{M}_1 \leq_c \mathcal{M}_{\in}$ and $\mathcal{M}_2 \leq \mathcal{M}_3$ [resp. $\mathcal{M}_2 \leq_s$ \mathcal{M}_3 , $\mathcal{M}_2 \leq_c \mathcal{M}_3$, then $\mathcal{M}_1 \leq \mathcal{M}_3$ [resp. $\mathcal{M}_1 \leq_s$ $\mathcal{M}_3, \, \mathcal{M}_1 \leq_c \mathcal{M}_3$].

4. Direct products

In this section, we consider restricted direct prod-

machines, where T is less than or equal to the ordinary product. We will always assume that T is less than or equal to the ordinary product.

Definition 4.1 Let $\mathcal{M}_1 = (Q_1, X, \tau_1)$ and $\mathcal{M}_2 =$ (Q_2, X, τ_2) be T-fuzzy finite state machines. The restricted direct product $\mathcal{M}_1 \wedge_T \mathcal{M}_2$ of \mathcal{M}_1 and \mathcal{M}_2 is the T-fuzzy finite state machine $(Q_1 \times Q_2, X, \tau_1 \wedge_T)$

$$(\tau_1 \wedge_T \tau_2)((p_1, p_2), a, (q_1, q_2))$$

$$= T(\tau_1(p_1, a, q_1), \tau_2(p_2, a, q_2)).$$

Theorem 4.2 Let $\mathcal{M}_1 = (Q_1, X, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X, \tau_2)$ be T-fuzzy finite state machines. Then $(\tau_1 \wedge_T \tau_2)^+((p_1, p_2), x, (q_1, q_2)) =$ $T(\tau_1^+(p_1, x, q_1), \tau_2^+(p_2, x, q_2))$ for all $p_1, q_1 \in Q_1$, $p_2, q_2 \in Q_2 \text{ and } x \in X^+.$

Definition 4.3 Let $\mathcal{M}_1 = (Q_1, X_1, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X_2, \tau_2)$ be T-fuzzy finite state ma-The full direct product $\mathcal{M}_1 \times_T \mathcal{M}_2$ of \mathcal{M}_1 and \mathcal{M}_2 is the T-fuzzy finite state machine $(Q_1 \times Q_2, X_1 \times X_2, \tau_1 \times_T \tau_2)$ with $(\tau_1 \times_T \tau_2)((p_1, p_2), (a, b), (q_1, q_2))$ $T(\tau_1(p_1, a, q_1), \tau_2(p_2, b, q_2)).$

Theorem 4.4 Let $\mathcal{M}_1 = (Q_1, X_1, \tau_1)$ and $\mathcal{M}_2 =$ (Q_2, X_2, τ_2) be T-fuzzy finite state machines. Then

$$(\tau_1 \times_T \tau_2)^+((p_1, p_2), (a_1 \cdots a_n, b_1 \cdots b_n), (q_1, q_2))$$

$$= T(\tau_1^+(p_1, a_1 \cdots a_n, q_1), \tau_2^+(p_2, b_1 \cdots b_n, q_2))$$

for all $a_1, \dots, a_n \in X_1, b_1, \dots, b_n \in X_2, p_1, q_1 \in Q_1$ and $p_2, q_2 \in Q_2$.

Proposition 4.5 Let $\mathcal{M}_1 = (Q_1, X, \tau_1)$ and $\mathcal{M}_2 =$ (Q_2, X, τ_2) be T-fuzzy finite state machines. Then $\mathcal{M}_1 \wedge_T \mathcal{M}_2 \leq_c \mathcal{M}_1 \times_T \mathcal{M}_2$.

The following proposition is a direct consequence of the associativity of \wedge_T .

Proposition 4.6 Let \mathcal{M}_1 , \mathcal{M}_2 and \mathcal{M}_3 be T-fuzzy finite state machines. Then the following are hold:

- (i) $(\mathcal{M}_1 \wedge_T \mathcal{M}_2) \wedge_T \mathcal{M}_3 = \mathcal{M}_1 \wedge_T (\mathcal{M}_2 \wedge_T \mathcal{M}_3)$.
- (ii) $(\mathcal{M}_1 \times_T \mathcal{M}_2) \times_T \mathcal{M}_3 = \mathcal{M}_1 \times_T (\mathcal{M}_2 \times_T \mathcal{M}_3)$.

5. Cascade products and wreath products

In this section, we consider cascade products and wreath products of T-fuzzy finite state machines, where T is less than or equal to the ordinary product. We will always assume that T is less than or equal to the ordinary product.

Definition 5.1 Let $\mathcal{M}_1 = (Q_1, X_1, \tau_1)$ and $\mathcal{M}_2 =$ ucts and full direct products of T-fuzzy finite state (Q_2, X_2, τ_2) be T-fuzzy finite state machines. The cascade product $\mathcal{M}_1 \emptyset_T \mathcal{M}_2$ of \mathcal{M}_1 and \mathcal{M}_2 with respect to $\omega : Q_2 \times X_2 \to X_1$ is the *T*-fuzzy finite state machine $(Q_1 \times Q_2, X_2, \tau_1 \omega_T \tau_2)$ with

$$\begin{split} &(\tau_1\omega_T\tau_2)((p_1,p_2),b,(q_1,q_2))\\ &=&\ T(\tau_1(p_1,\varnothing(p_2,b),q_1),\tau_2(p_2,b,q_2)). \end{split}$$

Theorem 5.2 Let $\mathcal{M}_1 = (Q_1, X_1, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X_2, \tau_2)$ be T-fuzzy finite state machines. Then

$$(\tau_1 \omega_T \tau_2)^+ ((p_1, p_2), x, (q_1, q_2))$$

= $T(\tau_1^+(p_1, \omega^+(p_2, x), q_1), \tau_2^+(p_2, x, q_2))$

where $p_1, q_1 \in Q_1, p_2, q_2 \in Q_2$ and $x \in X_2^+$.

Definition 5.3 Let $\mathcal{M}_1 = (Q_1, X_1, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X_2, \tau_2)$ be T-fuzzy finite state machines. The wreath product $\mathcal{M}_1 \circ_T \mathcal{M}_2$ of \mathcal{M}_1 and \mathcal{M}_2 is the T-fuzzy finite state machine $(Q_1 \times Q_2, X_1^{Q_2} \times X_2, \tau_1 \circ_T \tau_2)$ with

$$\begin{aligned} &(\tau_1 \circ_T \tau_2)((p_1, p_2), (f, b), (q_1, q_2)) \\ &= &T(\tau_1(p_1, f(p_2), q_1), \tau_2(p_2, b, q_2)). \end{aligned}$$

Theorem 5.4 Let $\mathcal{M}_1 = (Q_1, X_1, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X_2, \tau_2)$ are T-fuzzy finite state machines. Then

$$\mathcal{M}_1\omega_T\mathcal{M}_2 \leq_c \mathcal{M}_1 \circ_T \mathcal{M}_2$$
.

Corollary 5.5 Let $\mathcal{M}_1 = (Q_1, X_1, \tau_1), \mathcal{M}_2 = (Q_2, X_2, \tau_2)$ and $\mathcal{M} = (Q, X, \tau)$ are T-fuzzy finite state machines. If $\mathcal{M} \leq \mathcal{M}_1 \omega_T \mathcal{M}_2$, then $\mathcal{M} \leq \mathcal{M}_1 \circ_T \mathcal{M}_2$.

References

- [1] W. M. L. Holcombe, Algebraic automata theory, (Cambridge University Press, 1982).
- [2] S. J. Cho, J. G. Kim and S. T. Kim, "On T-generalized subsystems of T-fuzzy finite state machines", Far East J. Math. Sci. 5(1), 131-151, 1997.
- [3] Y. H. Kim, J. G. Kim and S. J. Cho, "Products of T-generalized state machines and T-generalized transformation semigroups", Fuzzy Sets and Systems, 93(1), 87-97, 1998.
- [4] D. S. Malik, J. N. Mordeson and M. K. Sen, "On subsystems of a T-fuzzy finite state machine", Fuzzy Sets and Systems 68, 83-92, 1994.
- [5] D. S. Malik, J. N. Mordeson and M. K. Sen, "Semigroups of T-fuzzy finite state machines", in: P.P. Wang, ed., Advances in Fuzzy Theory and Technology, Vol. II, 87-98, 1994.
- [6] D. S. Malik, J. N. Mordeson and M. K. Sen, "Submachines of T-fuzzy finite state machines", J. Fuzzy Math. 4, 781-792, 1994.

- [7] B. Schweizer and A. Sklar, "Statistical metric spaces", Pacific J. Math. 10, 313-334, 1960.
- [8] W. G. Wee, On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification, Ph.D. Thesis, Purdue Univ., 1967.
- [9] L. A. Zadeh, Fuzzy sets, Inform. Control 8, 338-353, 1965.