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Abstract.

We introduce the concepts of coverings, direct products, cascade products and wreath products of

T-fuzzy finite state machines and investigate their algebraic structures.
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1.

Introduction

Since Wee [8] in 1967 introduced the concept of
fuzzy automata following Zadeh [9], fuzzy automata
theory has been developed by many researchers.
Recently Malik et al. [4-6] introduced the concepts
of fuzzy finite state machines and fuzzy transfor-
mation semigroups based on Wee’s concept [8] of
fuzzy automata and related concepts and applied
algebraic technique. Cho et al. [2,3] introduced
the notion of a T-fuzzy finite state machine that is
an extension of a fuzzy finite state machine. Even
if T' = w, our notion is different from the notion of
Malik et al. [5]. In this paper, we introduce the con-
cepts of coverings, restricted direct products, full
direct products, cascade products and wreath prod-
ucts of T-fuzzy finite state machines that are gen-
eralizations of crisp concepts in algebraic automata
theory and investigate their algebraic structures.

For the terminology in (crisp) algebraic automata
theory, we refer to [1].

2. T-fuzzy finite state machines

Definition 2.1 [3] A triple M = (Q, X, 7) where
(} and X are finite nonempty sets and 7 is a fuzzy
subset of () x X x @, i.e., 7 is a function from @ x
X x @ to [0,1}, is called a fuzzy finite state machine
if 3 r(pya,g) <lforallpe @Qanda e X. If
q€Q

Y. 7(p,a,q) =1forallp€ Q and a € X, then M
qeQ

is said to be complete.

Note that our notion of a fuzzy finite state ma-

chine is different from the notion of a fuzzy finite
state machine of [5] that also is a generalizaiton of
the notion of a (crisp) state machine.

Let M = (@, X,7) be a fuzzy finite state ma-
chine. Then @ is called the set of states and X is
called the set of input symbols. Let X+ denote the
sct of all words of elements of X of finite length.

Definition 2.2 [7] A binary operation T on [0, 1]
is called a t-norm if

(1) T(a,1) = a,

(2) T(a,b) < T(a,c) whenever b < ¢,

(3) T(a,b) =T(b,a),

(4) T(a,T(b,c)) =T(T(a,b),c)
for all a,b,¢ € [0,1].

The maximum and minimum will be written as vV
and A, respectively. T is clearly V-distributive, i.e.,
T(avb,c) = T(a,¢) VvV T(b,c) for all a,b,c € {0,1].
Define Ty on {0,1] by To(a,1) = ¢ = Tp(1,a) and
To(a,b) =0if a # 1 and b # 1 for all a,b € [0,1].
Then A is the greatest t-norm on [0,1] and Ty is
the least t-norm on [0,1], i.e., for any t-norm T,
Ala,b) > T(a,b) > Tp(a,b) for all a,b € [0, 1].

T will always mean a tnorm on [0,1].
By an abuse of notation we will de-
note T(a1,T(az, T(--, T(an-1,an) ) by
T(ay, --,a,) where a1,---,a, € [0,1]. The legiti-

macy of this abuse is ensured by the associativity

of T (Definition 2.2(4)).

Definition 2.3 {3] Let M = (Q, X, 7) be a fuzzy
finite state machine. Definc 77 : Q x XT x Q —



[0,1] by

T (p, a1 an,q)
= V{T(T(p7alsrl)7T(rl?a’2>r2)7""7

T(ZT'n._Q,(ln_l,T’n_]), T(rn—lv Qn, Q))]rz € Q}

where p,q € @ and a;,---,a, € X. When T is
applied to M as above, M is called a T-fuzzy finite
state machine.

Proposition 2.4 (3] Let (Q,X,7) be a T-fuzzy
finite state machince. Then

T (p, 2y, q) = V{T(rH(p,z,r), 7V (r,y,q)) | T € Q}

forallp,ge Q andz,y € X™.

3. Coverings

Definition 3.1 Let My = (Qy,X;,71) and My =
(@2, X2,72) be T-fuzzy finite state machines. If
& X1 — Xqis afunction and 77 : Q2 — @1 is a sur-
jective partial function such that 7F (n(p), z,n(q)) <
75 (p,&(x),q) for all p,g in the domain of 7 and
x € X{, then we say that (,€) is a covering of
My by Mj and that My covers M, and denote by
M; € My, Moreover, if the inequality turns out
equality whenever the left hand side of the inequal-
ity is not zero [resp. the inequality always turns out
equality], then we say that (n,£) is a strong cover-
ing [resp. a complete covering] of M; by My and
that My strongly covers [resp. completely covers|
M and denote by My <, Mg [resp. My <. Ma,].

In Definition 3.1, we abused the function £&. We
will write the natural semigroup homomorphism
from X} to X2+ induced by £ by & also for conve-
nience sake. We give an example that is elementary
and important.

Example 3.2 Let M = (@, X,7) be a T-fuzzy
finite state machine. Define an equivalence rela-
tion ~ on X by a ~ b if and only if 7(p,a,q) =
7(p,b,q) for all p,g € Q. Construct a T-fuzzy fi-
nite state machine My = (Q, X/ ~,7~) by defining
7™(p, [a],q) = 7(p,a,q). Now define £ : X — X/ ~
by £(a) = [a] and 7 = 1¢. Then (n,€) is a complete
covering of M by M clearly.

Proposition 3.3 Let My, My and M3 be T-fuzzy
finite state machincs. If My < Mo [resp. M; <,
MQ, My <, Me] and M2 < Ms [I‘OSp. Mo <,
M3z, My <. Ms], then My < Ms [resp. My <,
M37 Ml Sc M3]

4 . Direct products

In this section, we consider restricted direct prod-
ucts and full direct products of T-fuzzy finite state

machines, where T is less than or equal to the ordi-
nary product. We will always assume that T is less
than or equal to the ordinary product.

Definition 4.1 Let My = (@1, X,71) and My =
(Q2,X,72) be T-fuzzy finite state machines. The
restricted direct product My Ar My of M, and M,
is the T-fuzzy finite state machine (Q; xQ2, X, 11 Ar
To) with

(Tl AT 7'2)((1’1:1’2), a, ((Il, Q2))
= T(Tl(p17a7QI)7T2(p27a’qQ))'

Theorem 4.2 Let My = (Q1,X,71) and
My = (Q2,X,73) be T-fuzzy finite state ma-
chines. Then (my Ar 72)*((p1,p2),T,(q1,92)) =

T(r{ (pr, %, q1), 75 (p2. 2, q2)) for all p1,q1 € Q,
P2,q2 €EQr andx e XT.

Definition 4.3 Let M; =
My =
chines.

of Ml

(@1,X1,71) and
(Q2, X2,72) be T-fuzzy finite state ma-
The full direct product M; xp My
and My is the T-fuzzy finite state
machine (@1 x Q2,X; X X711 Xr T2)
with (n xr m)((pop) (@b, (g2) =
T(m1(p1,a,q1), 72(p2, b, 92)).

Theorem 4.4 Let M; = (¢4, X;,71) and M3 =
(@2, X2, 72) be T-fuzzy finite state machines. Then

(11 X7 12) " ((p1,p2), (81 -+ - @, by - - - by), (41, 02))

= T(T;(plval"'ana41)77'2+(P2,b1"‘bn,‘h))

for all ay,---,a, € Xy, by,--
and p2, g2 € Q2.

"bn € X27 PLq € Ql

Proposition 4.5 Let M; = (Q1,X,71) and M5 =
(Q2, X, T2) be T-fuzzy finite state machines. Then
My Ar My < My xp Ms.

The following proposition is a direct consequence
of the associativity of Ap.

Proposition 4.6 Let M, My and M3 be T-fuzzy
finite state machines. Then the following are hold:
(i) (Ml Ar M2) Ar M3z = My Ar (Ma Ar M3).
(if) (Ml XTMQ) XTM3 = M1 XT(M2 XTM;;).

5. Cascade products and wreath

products

In this section, we consider cascade products and
wreath products of T-fuzzy finite state machines,
where T is less than or equal to the ordinary prod-
uct. We will always assume that 7" is less than or
equal to the ordinary product.

Definition 5.1 Let My = (Q1,X;,71) and My =
(@2, X2,72) be T-fuzzy finite state machines. The



cascade product MyprMsy of My and My with
respect to w i @2 X Xo — X is the T-fuzzy finite
state machine (Qq X @2, X2, iwrTs) with

(mwrm2)((P1,p2), b, (91, 92))
= T(7m1(p1,0(p2.b),q1), T2(p2, b, q2)).

Theorem 5.2 Let My = (@1, X1, 711) and My =
(Qa, Xa,T2) be T-fuzzy finite state machines. Then

(riwrT2) " ((p1,p2), T, (q1,¢2))
= T(r{ (p1,w¥ (p2, 2), @), 75 (P2, %, q2))

where p1,q1 € Q1,p2,q2 € Q2 and x € X5

Definition 5.3 Let My = (Q1,X,,71) and My =
(@2, Xq,72) be T-fuzzy finite state machines. The
wreath product My or Mg of M; and My is the T-
fuzzy finite state machine (Q; x Qq, Xle x Xa, 1107
Tp) with

(11 o1 72)((P1,P2), (f, ), (g1, 92))
= T(n(p1, f(P2),q1), T2(P2, b, g2))-

Theorem 5.4 Let My = (Q1, X1,71) and M2 =
(Qa, X2, T2) are T-fuzzy finite state machines. Then

MywrMgy < My o M.

Corollary 5.5 Let M; = (Q1,X;,n1),My =
(Q2,X2,m2) and M = (Q,X,7) arc T-fuzzy fi-
nite state machines. If M < MywrMs, then
M S M1 o MQ.
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