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Abstract

This paper presents a stabilization algorithm for a class of fuzzy systems with singleton conse-

quents. To this alm, we introduce two canonical forms of an unforced fuzzy system and o stability

theorem. A design example is shown to verify the stabilization algorithm.
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1. Introduction

There are three tvpes of fuzzy (control) systems clas-
sified by their consequents : fuzzy sets (type 1), single-
tons (type II), or lincar functions (type IIT).

Recently many studies on the model-based design of
fuzzy conrollers are centered around the type 111[3.4].
The idea of the stability analyvsis is to regard fuzziness
in the type Il systems. e, nonlinearity, as uncertainty
in polytopic lincar systems and embed a stability prob-
lem in robust control theory. On the otherhand, there
have been few on the model-based control of the type
I systems(1,2]. Most of studies on the stability of the
type I control systems are concerned with the stabil-
ity analysis of a certain non-fuzzy system with a fuzzy
controller.

In the case of the type T and II systems, a reason for
few studies on the model-based control is that there has
been no theorctical study on the stability of unforced
fuzzy systems. Recently, one of the authors has pre-
sented a way to stahility analysis of an unforced type Ti
fuzzy system[5]. In this paper we discuss a stabilization
algorithm for the tvpe H fuzzy systems.

2. Preliminaries

In this section, we introduce two canonical forms
and a stability theorem of two-dimensional continuous
fuzzy systems with singleton consequents.

Suppose a system in the following form :

if xis G77(x), then & is hio,7),

a=12 - n, 7=1,2,--,n

(1)

where @(t) = (& (1), 22(2))7 is a two-dimensional state
vector, G77(x) = (G7(z1),G5(x2))7 is a member-
ship function vector with respect to z, h{o,7) =
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(hy(o,7), ha(o, 7)) is a singleton consequent. vector,
ny.ny > 2 and T denotes ‘transpose’.

We assume that GY and G are normalized member-
ship functions of a triangular formn as follow :

zi—d, (A —1)

mm, (1,(/\’"1)':1.[', S(l’,(/\)
Gy = di(A+1) ~ ,
) ETX(Ti)—)TT(_)' AN <o < d(A+ 1)
0, otherwise
(2)

where 1 = 1,2, and also we assume that ;(N) < d;(A+
), A\A=0gorr.

Define a square R,, and a vector d{s.7) in two-
dimensional space as

Ror = [di(0), di(o + )] x [d
d(o,7) = (di (o). ds

We assume that there exist ¢ and 7
0 < di{o+1)and do(r) < 0 < do(r + 1). and call

this zero-square denoted by H’a',. Fig. 1 shows squares
allocated on the state-space. 2 in (1) is inferred as

27, daofr +1)] (3)
(7 >> (4)

such that dy (o) <

X2
S . Ly dale4D)
; Rgf% RHL xl
P o
RS S— FR— o d2(7)
dy() dia+l)  di(5+2)

Fig. 1 Squares on the statc-space (e Iy a vertex)
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where GT + G = 1, ¢ + GIY'Y = 1 and
PDHN ZTH Gi G] = 1. We also obtain
g+l 7+1 )
=Y Y Gix())Gi(n2(1))d,j), « € Ror. (6)
i=0 j=71

Based on this fact, we obtain the next parametric
expression.
Parametric expression[3]
system (5) is expressed as

For x € Ry, the fuzzy

r = oyad(o,7) + o (1 -~ a)d(o, 7+ 1)
+(1 = ay)oyd{o +1.7)
+(1—a;)(1 —azjde+1,7+1) (7a)
r = aiah(o,7)+a1(l - ax)h(o,7+1)
+(1 = ay)ashio +1,7)
+(1—a1)(1~as)h{c +1,7+1) (7b)
where
dy{o+ 1)~
T = 0L <1
o (m1) ol o) VS s1(E)
d'_J(T + 1) - Ia
oy (i = , 0< < 1.(8t
azlre) G v —d(r) @ "SesL6Y)

We note that a parametric expresion implies a
singleton-rule expression at each vertex :

x=d(i,j) > & = hii,j) (9)
wherei=ag,0+ 1,5 =7,7+ 1.
Define af = a;(0). aj = ay () and for ¢ = 1,2
hilo+1,7) = hilo. 1)
P 10
i di(o+ 1) — dy(0) (10)
h; ((7 T4+1)~ Lo, 7)
R / 10b
iz dy(7+ 1) = da(7) (100)
S hi(lo + 1,7+ 1) - hi(o, 7+ 1) (11a)
il d1(0+1)" 1((7)
hi{fo + 1,7 + )~1L(a+1,T)
o= 2 ! : 11b
4 do(7 + 1) — day(7) (11b)

Then we also obtain a state-space expression for a two-
dimmensional system.

State-space expression|5] The fuzzy system (5) has

the following expression :
T = Ag(x)x+p,.. x€R,, (12)
fey = afaSh(e, ) +al(l - aDh(s, 7 +1)
+(1 = a)ash(c +1.7)
+(1-al)(1 —aj)h(oc +1,7+1) (13)
where for © € Ry, ., = 0. Though the matriz A,,
has four equivalent expression, hereafter it will be ex-
pressed as follow :

Asr aS{(1) + (1 — a)S(r + 1) (14)

(yy

Ay

o= (

afary + (1 — af)a}, (15)
afaz + (1 - af)aj,

Stri1) - ai"l alayy + (1 — “1)“12 (15b)
ay ofaz + (1 - af)ag,

From (14) we know that the fuzzy system in (12)
s characterized as a piccewise-polytopic-affine system
where & = S(7)x + p,, and & = S(r + xr + p,,,
called extreme systems.

are

From the above state-space expression the vertex
condition of the system is expressed as
1) = Aor(d(i, 5))d(i,7) + g, (16)

wheret = 0,0 + 1, j =

Ve o h(

7.7 + 1. Moreover, from this
condition we can obtain the singleton-rules (9) and the
paramefric expression (7). Thus we can derive a state-
space expression from a parametric expression and vice
versa.

We put a zero-cqualibrium condition ZC to the state-
space expression which states that € =0 — & = 0.

(17)

Now we consider the stability of the fuzzy system
(5). Define a Lyapunov function by V(x) = =’ Pz,
P > 0. Then the derivative of V(z) is obtained as
V(z) = &' Pz + 2" Pi. We consider V(x) in a region
R.;. From (7) we can derive two expressions :

ZC . p,, =0, zER.

ar

Vir) = ol (0,%) + (1 —a)V{o + 1, %)
(1 —a)E(, %) (1&a)

Vi) = AV, 1)+ (1 —a)V(e, 7+ 1)
~o(l —a)E(*, ) (18Dy)

here
V(iox) = 2h(i,«)TPd(i, *) (19a)
V(x.j) = 2h(x,/)TPd(x,j) (19h)
oo+l j=r,7 41

where h(i, %) is the value of & at £ = d(i,*), and
d(i,*) = (i (D). do(x))T, da(7) < do(x) < do(7 + 1).

In a similar wanner, h(x 7) and d(*, j) arc defined.

E(. % (20a)
= 2hio +1.%) - h(o, *))TP(d(O' + 1.%) — d{o, *))
E(x.) (20h)
= 2h(x. 7+ 1) —h(x, 7N Pd(x, 7+ 1) ~d{+.7))

We call the following inequalities concerning above
expressions stable vertex conditions SV (7 and stable
edge conditions SEC, respectively,

Vi) <0

) >~ (\/—V(i,]’) + \/—\'«'(z‘,j +1) )

where i =a 0+ 1. j=71,7+ 1.
With the above preparations, we have the following
stability theorem.

SV 21)

o~

SEC :




Theorem 1 (Stability Theorem [5],[7]) Consider
a precewise-polytopic-affine system such that

x(t) = Alag)z() + p,,, x(t) € R4y
Aaz) = a2S(7) + (1= a2)S(r + 1)
where pr,. =0 in RS . ‘

The system 1s asymptotically stable in the large if there
crists a common P > 0 such that

(1) in the zero-square, SVC, SEC and SZC are sat-
isfied, where SZC : ~A(a§)TP — PA(as) > 0,

(2) in the other regions, SVC and modificd ST2C are
satwsfied, where SEC :

2
=+ DV G ) )
+\/ v+ 1,018 (z’*],,j))
where .
0<v(,j)<1, i=o,0+1, j=7r.7+1

We assume that the equalitics do not hold at the same
time 1 the above inequalitics.

3. Stabilizing Control

In this section, we consider a state-feedback stabi-
lizing control of the type II fuzzy systems and present
a stabilization algorithm for the model-hased design of
the tyvpe I fuzzy controllers.

In the sequel we shall restrict the object of control
to the following (non)lincar system :

f(x) + bu

where f(x) 1s a fuction vector,
and u is a scalar input.
Consider a state-feedback fuzzy controller of tvpe 11

(23)

Tr =
b 1s a constant vector
if ©is G7T(x), then wisl{o ). (24)

We obtain a parametric expression of the above fuzzy
controller

u(t) = oqgal(o,7) +ai{l — a)l(o. 7+ 1)
+(1——a1)a2 l(U+].,T) (25)
+1—a))(1—a)llc+1.7+1).

Define
{o+1,7)— (o, 7) o
“ di(o+ 1) —d (o) (264)
o, m+1) = {o,7) ‘
“T TLE T ) = d(r) (26b)

o+ 1.7+ 1) =l o, 7+ 1)
Fo= 27
i dy(o + 1) —di(o) (272)
{ 1
ot = l(0+1 T+ 1) —lo+1,7) (27h)
d2 (7 + 1) — da(7)

Then we also obtain a state-space expression

u(t) = ¢ x+&, x€Ry (28)
&or = ajaSl(o,7)+af(1 —ad)l(o, 7+ 1)

+(1 —oV)aslio+1,7)
+l-af){l-aDllc+1,7+1)

(29)

where for x € R., &, = 0. Though the vector ¢, has
two equivalent expressions. we shall use the following
expression coressponding to (14) and (15).

Cor aok(7) + (1 — a2)k(T + 1) (30)
k(1) (ay , a%as + (1 = af)af)T (31a)
k(r+1) = (daf . aSay + (1 - aS)ad)T. (31h)

Applying the fuzzy control (24) to the fuzzy system
(1), we obtain a closed-loop system

if xis G (x), then xis hio,7) + bl{o,7)  (32)
where the singleton consequent in (32) means the value
of f(x) + bu in (23) for x = d{s, 7).

From (7) and (25), we can derive a parametric exproes.
ston of the closed-loop svstem (32)

aln»_ylhz,(n, T)

i =
+ay(1 = ay)h(o, 7+ 1)
+(1 = ay)ash{oc +1,7)
+(0 =) (1 —ax)h(c+1,7+1) (33)
where
h(i,j) = h{i.j)+bl(i,j). (34)

And also, from (12) and (28) we can derive a state-
space expression of the closed-loop system

r = Ajz+q,, (35)
or = (13’08[1(rf 7) + af(l - ag)fl(a, T+ 1)
+(1 = a)ash(o + 1,7) (36)
+(1 =)l —af Ya(o + 1,7+ 1)
where
A, Ayr + bcdr, (37a)
bor = Ror +bLr. (37h)

It is seen that the closed-loop systems (33) and (35)
are of the same forms as (7) and (14), respectively.

Therefore, it is possible to apply Theorem 1 for the
feedback control system. QOur idea for stabilizing con-
trol is to assign vertices by adjusting the singleton con-
sequents of a control law so that the closed-loop system
satisfies the stability conditions. We assume that for



all regions, extrenie afline systems are controllable in
order to guarantee the vertex-assignment[6).

Now we discuss a stabilization algorithimn.

We consider the problem of finding a feedback cou-
trol u(x) for the fuzzy system (32) with the following
properties :

(i) it achieves asvinptotic stability of the equilibrium
xr =0,

(ii) it minimizes the cost function

P / (Q(x) + R(w))dt (38)
40
where Q) > 0. R(u) > 0 forallx #0, u # 0.

Generally it is not a simple task to solve the problem
for a fuzzy system or a nonlinear system. Here we will
take an inverse-problem-approach of optimal control.
For a certain I” > (), we first assume an optimal control
law at each vertex as

WiJ) = = b P, j), (39)
rle,g) >0 P >0, i=00+1, j=7,7+1.

For an unforced svstem where 1(4,7) = 0 in (39). the
derivative of Vi = 27 Pz is obtained as

v, = Heyeoh{o )+ a1 (1 — ag)h(o, 7+ 1)
+ (1 - oy)ash(o+1,7)
1 (1 a1 —ag)h(oc+ 1,7 + l)]’]‘/’
[end{a ) 4+ ay(1 —az)d(a, 7+ 1) (40)
F - ap)and{o 4+ 1,7)

+ (1 - a1 —a)d(o + 1,7+ 1))
Denote V, at cach vertex as V,(i, 7). We have

Volig) = 20(i, )T Pd(i, ),
t=0,04+1, =7,7+1.

(41)

Set R(u) = —u{w)b" Px and denote R(u) at each ver-
tex as R{7, 7). IR{i.j) is expressed as
RG. Y =~ )T Pd(i, j)
=) 16, 9)°
(b' Pd(i, j))°
r(7,7)

(12)

where r(i,j) > 0. i =o,0+1land j = 7,7+ 1. Now v
for a control input _1511,(':1:) 1s expressed as

Uy, = V,—R@. (43)
Setting Q{x) = ———\"% .- We obtain
Vo= —Q(x) - R(uw)
= V, - 2R(u). (44)

Therefore, if R{u) > 0 and “'l_“ < 0, ie, Qz) > 0, we
can say that u composed of ( 9} is an optimal control
law,

Hence, the strategy of a stabilization alogorithm is
as follows : We first set an appropriate J. Then we
assign vertices so that (i) R(7,5) > 0 and (ii) V < 0
for Vo in the inside of a region ; as for R(u), we do not
require that R{u) > 0 in the inside of a region.

[ Stabilization algorithm |

(step 1) Check the controllability of the system.
In cach region we check the controllability of extreme

systems in order to guarantee the vertex-assignment,
(step 2) Set a base system and parameters.

In the zero-square by setting ay = a5(= a2(0)) we
have

T = Sex+bu =zl (45)
Se = a3S(T)+(1—-af)S(r+1). (46)

We use (45) as a base system for all regions.

Then we assume that 7Q.x + rou” where Q, > 0,
r, > 0 and set an optimal v as v, = A:TbPO:B. As
usual P, is obtained by a Ricatti equation. We use
this P, as a common P for all regions. We have for u.

V, = ~:p](2,,;17 —~r,,uf

(47)
and at vertices
V.(ij) =

“:(ivj) =

—d(i,5)7Q,d(ij) — rou-(i,§)? (48)
1 .
—=b"Pdii ). (49)

/rO
We set a range of control input as u, > |uf > 0, which
will be used in (step 5).
(step 3) Determine a control law at each vertex.
At each vertex we determine the parameters r(i, j)
in {39) such that

V(i,5) < Vilig). Vi, (50)
We introduce a parameter ¢ in order to bring about a
damping effect. We consider two cases.

(i) For the case that V,(i.7) > V.(7. 7).
Denote the maximum of feasible (i, 7} by r. where

re 1s obtained as

26T Pdie, j))?
ro(ig) = 2D sy
Voleo ) =1 lig)

Applying a parameter ¢ to (51). we set an upper
bound r* as

1 !
T = : t+ .
r(i,7)

reli.g)
For the case that V,(i. ;) < V(i 5).

(ii)
Since a closed-loop systen satisfies already (50),
we can say that v = 0 is a candidate of stabilizing
control laws. In this case we try to reduce V' (¢, j)



as much as possible by setting an upper bound r*
as follows :
1
r*(i,7)
Finally we determine the values of 7(¢, ) in the interval
(0.7=(7,7)] given by (52) or (53).
(step 4) Check the stability of a closed-loop system.

Using 7(4,7) and a common P, > 0, we check the
stability of a closed-loop system in each region. If a
svstem satisfies the stability conditions of Theorem 1,
the (i, ) obtained from 7(i, j) gives a stabilizing con-
trol law. if not, we set V.(i,j) = 0 and then excute
(step 3).

(step 5) Improve a damping effect..

Using {(7, j) obtained from (step 4) we calculate the
maximum value of control input denoted by 1, =
max;, ;|1(#,7)]. And we change the parameter ¢ in (52)
or (53) and then iterate (step 3) and (step 4) until the
maximurn value falls in an allowing range, for instance,
0.9%u, <1, <u,.

>0 (53)

4. Design Example

We design a stabilizing controller for a type I fuzzy
model of the well-known Van der Pol system

.’b] = &y

To = -1 +€(l— .’L‘%).’L‘g + u. (54)
where z7 € [-2.5 2.5]. a» € [--3.0 3.5], u € [-15 15]
and e = 1. Table 1 shows the vertex condition of an
approximated fuzzy model where the number of regions
is 45. And Fig. 2 shows the nonlinearity of system (54).
We illustrate a design process of a type II fuzzy con-
troller.
{step 1) This system is controllable for all regions.

(step 2) In the zero-square S, and b are

c-(omE) e ()

Using the above parameters, a base system is obtained
from (45). We choose
) LT =1

QO:(

By solving a Ricatti equation, we obtain

Po= ).

We use this P, as a common P for all regions. And
we caleulate V. (i, ) in (49) which is shown in Fig. 3.
From (54) we set a range of control input as u, = 15.
(step 3, 4 and 3)  From (52) or (53) we set ¢ = 2752
and caleulate »* (7, j). We luitially choose r(i, 7) as the
upper bound r*(Z, 7). And then check the stability of
the closed-loop systeni. In this example the closed-loop
system satisfies the stability conditions for all regions.

0.00
—1.00

1.00
0.99

10.0
-3.1

-3.1
1.0

12.6192 2.3166
2.3166  3.5616

Thus fiom (step 5) we have ¢ = 0.1572. We can ver-
ify the stability with the vertex condition in (16) for
the values of parameters v(i, 7) of SEC in Theorem 1
which are shown in Table 2.

The designed control law is shown in Table 3. Fig. 4
shows the input-ouput relation of the fuzzy controller,
where we see that the relation is nonlinear.

Fig. 5 shows the variable 5 of the closed-loup svs-
tem on the state-space. We know that the surface of
Ts is similar to a plane, i.e., linear.

For all regions of the closed-loop system, V7 is shown
in Fig. 3 where we see that the inequality (50) almost
holds. Fig 6 and Fig 7 show phase potraits of the open-
loop systent (dotted line) and the closed-loop system
(solid line) for the initial states z(0) = (2.25, 0)7 and
z(0) = (0.25, 0)7, respectively. The open-loop svstem
has limit cyele. We find that the closed-loop system
converges to the origin (0, 0) for both inner and outer
initial states of the limit cycle.

5. Conclusion

We have discussed the stability of a tvpe I1 fuzzy
system and presented a stabilization algorithm based
on an inverse-problem-approach of optimnal control. A
design example has been shown for the Van der Pol
system.
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Table 1 Fuzzy model of Van der Pol systemn
N ‘ () [ @) [ B @) | a5 ] da(6)
ha(dr, d2) ﬂ”’*i‘:ﬁ“‘ B I 3 R
di(1) | 2.5 || 20.875 | 10.375 | 4.075 | 0.925 | -5.3:5 | -15.875
di(2) | 17 || ®3I5 [ 4535 | 2267 | 1.033 | 1135 | 1915
d,(3) | -1.0 1.000 | 1.000 | 1600 | 1.000 | T.000 1.000
di(A) | 05 || 2025 [ 0625 | 0375 | 0.7250 | 16250 [ 37125
di(5) | 0.1 || 3365 | 1385 [ 0.197 | 0.397 LARA T 9565
di{6) | 01 3565 | -1.585 | 0397 | 0.197 185 T 0365
di(7) [ 05 || 3125 | 1625 | -0.725 | -0.275 0,625 2125
di(8) | 1.0 | “1.000 | -1.000 | -1.000 | -1.000 7,000
di(9) | 1.7 7915 | 1135 | -1.133 | 2,267 K
di(10) [ 26 || T80 1 5375 20925 | 4.07h | 1oais | 00s7

Fable 2 A example of parameter ~

[ region THe [ Ale s+ ) Tlo+ L) 1o+ 1,7 +1)]
d1(3) d1(5)] X [do(3) d2(3)] || 0.500 0500 0.969 0.857
d1(6) di(7)] x [d2(3) d2(4)] [ 0857 0.969 0500 0.500
the other regiou(z ¢ I70.) 0.500 0.500 0.500 |  0.500

Tuble 3 Fuzzy controller of Van der Pol

(1) d»(2) d>(3) d>(1) do(5) d2(6)
F Hdi,d2) l’ B 15 03 03 151 35
di(l) [-25 2.8700 1 35243 1 6.0665 | 7.3375 | 98797 T -1.0492
d(2) | -1.7 0027 | G6.1197 | 4.92987 | 418197 ] -0.2207 T -1.3405
di(3) | -1.0 13.6112 7.378]1 3.6203 17413 | -2.0165 -8.2796
d,(4) 0.6 [ 110u8 T 70627 | 25049 | 0.1739 19 1 -12.2450
5) 61504 | 1.5045 | -0.96%1 111573

5) 59742 | 09684 | -15015 -11.6934 |
) 4879 [-0.1759 T -2.5019 -14.9258
20765 [ -1.7413 ] -36u03 136412
S 0.2207 | -4.1849 | -1.9298 -89027

98797 | 73375 | 60665 | -30243 [ -2.8700 |

Fig. 2 State-space representation of
Iy (open-loop system)

Pl

3 Votabove) and \"(l)(‘llm\' ;

Fig. 4 Fuzzy controller
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Fig. 5 State-space representation of Fig. 6 Phase portrait for x(0) = Fig. 7 Phase portrait for x(0)
xy (closed-loop system) (2.25. 0)7 025, 0"



