A Stabilization Algorithm for Fuzzy Systems with Singleton Consequents

Michio Sugeno and Chang-Hoon Lee

Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502 Japan

Tel:+81-45-924-5645 Fax:+81-45-924-5681 E-mail:chlee@fz.dis.titech.ac.jp

Abstract

This paper presents a stabilization algorithm for a class of fuzzy systems with singleton consequents. To this aim, we introduce two canonical forms of an unforced fuzzy system and a stability theorem. A design example is shown to verify the stabilization algorithm.

Keywords: Fuzzy Control, Model-Based Control. Stability Analysis, Optimal Control

1. Introduction

There are three types of fuzzy (control) systems classified by their consequents: fuzzy sets (type I), singletons (type II), or linear functions (type III).

Recently many studies on the model-based design of fuzzy conrollers are centered around the type III[3,4]. The idea of the stability analysis is to regard fuzziness in the type III systems, i.e., nonlinearity, as uncertainty in polytopic linear systems and embed a stability problem in robust control theory. On the otherhand, there have been few on the model-based control of the type I systems[1,2]. Most of studies on the stability of the type I control systems are concerned with the stability analysis of a certain non-fuzzy system with a fuzzy controller.

In the case of the type I and II systems, a reason for few studies on the model-based control is that there has been no theoretical study on the stability of unforced fuzzy systems. Recently, one of the authors has presented a way to stability analysis of an unforced type II fuzzy system[5]. In this paper we discuss a stabilization algorithm for the type II fuzzy systems.

2. Preliminaries

In this section, we introduce two canonical forms and a stability theorem of two-dimensional continuous fuzzy systems with singleton consequents.

Suppose a system in the following form:

if
$$\mathbf{x}$$
 is $G^{\sigma\tau}(\mathbf{x})$, then $\dot{\mathbf{x}}$ is $\mathbf{h}(\sigma, \tau)$, (1)
 $\sigma = 1, 2, \dots, n_1, \ \tau = 1, 2, \dots, n_2.$

where $x(t) = (x_1(t), x_2(t))^T$ is a two-dimensional state vector, $G^{\sigma\tau}(x) = (G_1^{\sigma}(x_1), G_2^{\tau}(x_2))^T$ is a membership function vector with respect to x, $h(\sigma, \tau) =$

 $(h_1(\sigma,\tau), h_2(\sigma,\tau))^T$ is a singleton consequent vector, $n_1, n_2 \geq 2$ and T denotes 'transpose'.

We assume that G_1^{σ} and G_2^{τ} are normalized membership functions of a triangular form as follow:

$$G_i^{\lambda}(x_i) = \begin{cases} \frac{x_i - d_i(\lambda - 1)}{d_i(\lambda) - d_i(\lambda - 1)}, & d_i(\lambda - 1) \le x_i \le d_i(\lambda) \\ \frac{d_i(\lambda + 1) - x_i}{d_i(\lambda + 1) - d_i(\lambda)}, & d_i(\lambda) \le x_i \le d_i(\lambda + 1) \\ 0, & \text{otherwise} \end{cases}$$

where i = 1, 2, and also we assume that $d_i(\lambda) < d_i(\lambda + 1)$, $\lambda = \sigma$ or τ .

Define a square $R_{\sigma\tau}$ and a vector $d(\sigma,\tau)$ in two-dimensional space as

$$R_{\sigma\tau} \equiv [d_1(\sigma), d_1(\sigma+1)] \times [d_2(\tau), d_2(\tau+1)]$$
 (3)

$$\boldsymbol{d}(\sigma,\tau) \equiv (d_1(\sigma), \ d_2(\tau))^T. \tag{4}$$

We assume that there exist σ and τ such that $d_1(\sigma) < 0 < d_1(\sigma + 1)$ and $d_2(\tau) < 0 < d_2(\tau + 1)$, and call this zero-square denoted by $R_{\sigma\tau}^{\sigma}$. Fig. 1 shows squares allocated on the state-space, \dot{x} in (1) is inferred as

Fig. 1 Squares on the state-space (• is a vertex)

$$\dot{x} = \sum_{i=\sigma}^{\sigma+1} \sum_{j=\tau}^{\tau+1} G_1^i(x_1(t)) G_2^j(x_2(t)) h(i,j), \quad x \in R_{\sigma\tau} \quad (5)$$

where $G_1^{\sigma} + G_1^{\sigma+1} = 1$, $G_2^{\tau} + G_2^{\tau+1} = 1$ and $\sum_{i=\sigma}^{\sigma+1} \sum_{j=\tau}^{\tau+1} G_1^i G_2^j = 1$. We also obtain

$$x = \sum_{i=\sigma}^{\sigma+1} \sum_{j=\tau}^{\tau+1} G_1^i(x_1(t)) G_2^j(x_2(t)) d(i,j), \quad x \in R_{\sigma\tau}.$$
 (6)

Based on this fact, we obtain the next parametric expression.

Parametric expression[5] For $x \in R_{\sigma\tau}$ the fuzzy system (5) is expressed as

$$x = \alpha_{1}\alpha_{2}d(\sigma,\tau) + \alpha_{1}(1-\alpha_{2})d(\sigma,\tau+1) + (1-\alpha_{1})\alpha_{2}d(\sigma+1,\tau) + (1-\alpha_{1})(1-\alpha_{2})d(\sigma+1,\tau+1)$$
(7a)
$$\dot{x} = \alpha_{1}\alpha_{2}h(\sigma,\tau) + \alpha_{1}(1-\alpha_{2})h(\sigma,\tau+1) + (1-\alpha_{1})\alpha_{2}h(\sigma+1,\tau) + (1-\alpha_{1})(1-\alpha_{2})h(\sigma+1,\tau+1)$$
(7b)

where

$$\alpha_1(x_1) = \frac{d_1(\sigma+1) - x_1}{d_1(\sigma+1) - d_1(\sigma)}, \quad 0 \le \alpha_1 \le 1$$
 (8a)

$$\alpha_2(x_2) = \frac{d_2(\tau+1) - x_2}{d_2(\tau+1) - d_2(\tau)}, \quad 0 \le \alpha_2 \le 1.$$
 (8b)

We note that a parametric expresion implies a singleton-rule expression at each vertex:

$$x = d(i, j) \longrightarrow \dot{x} = h(i, j)$$
 (9)

where $i = \sigma, \sigma + 1, j = \tau, \tau + 1$.

Define $\alpha_1^o \equiv \alpha_1(0)$, $\alpha_2^o \equiv \alpha_2(0)$ and for i = 1, 2

$$a_{i1} = \frac{h_i(\sigma + 1, \tau) - h_i(\sigma, \tau)}{d_1(\sigma + 1) - d_1(\sigma)}$$
 (10a)

$$a_{i2} = \frac{h_i(\sigma, \tau + 1) - h_i(\sigma, \tau)}{d_2(\tau + 1) - d_2(\tau)}$$
 (10b)

$$a_{i1}^{+} = \frac{h_i(\sigma+1,\tau+1) - h_i(\sigma,\tau+1)}{d_1(\sigma+1) - d_1(\sigma)}$$
 (11a)

$$a_{i2}^{+} = \frac{h_i(\sigma + 1, \tau + 1) - h_i(\sigma + 1, \tau)}{d_2(\tau + 1) - d_2(\tau)}$$
 (11b)

Then we also obtain a state-space expression for a twodimensional system.

State-space expression[5] The fuzzy system (5) has the following expression:

$$\dot{x} = A_{\sigma\tau}(x)x + \mu_{\sigma\tau}, \quad x \in R_{\sigma\tau}$$

$$\mu_{\sigma\tau} = \alpha_1^o \alpha_2^o h(\sigma, \tau) + \alpha_1^o (1 - \alpha_2^o) h(\sigma, \tau + 1)$$

$$+ (1 - \alpha_1^o) \alpha_2^o h(\sigma + 1, \tau)$$

$$+ (1 - \alpha_1^o) (1 - \alpha_2^o) h(\sigma + 1, \tau + 1)$$
(13)

where for $x \in R_{\sigma\tau}^o$, $\mu_{\sigma\tau} = 0$. Though the matrix $A_{\sigma\tau}$ has four equivalent expression, hereafter it will be expressed as follow:

$$A_{\sigma\tau} : \alpha_2 S(\tau) + (1 - \alpha_2) S(\tau + 1) \tag{14}$$

$$S(\tau) = \begin{pmatrix} a_{11} & \alpha_1^o a_{12} + (1 - \alpha_1^o) a_{12}^+ \\ a_{21} & \alpha_1^o a_{22} + (1 - \alpha_1^o) a_{22}^+ \end{pmatrix}$$
 (15a)

$$S(\tau+1) = \begin{pmatrix} a_{11}^+ & \alpha_1^o a_{12} + (1-\alpha_1^o) a_{12}^+ \\ a_{21}^+ & \alpha_1^o a_{22} + (1-\alpha_1^o) a_{22}^+ \end{pmatrix}$$
(15b)

From (14) we know that the fuzzy system in (12) is characterized as a piecewise-polytopic-affine system where $\dot{x} = S(\tau)x + \mu_{\sigma\tau}$ and $\dot{x} = S(\tau + 1)x + \mu_{\sigma\tau}$ are called extreme systems.

From the above state-space expression the vertex condition of the system is expressed as

$$VC : \mathbf{h}(i,j) = A_{\sigma\tau}(\mathbf{d}(i,j))\mathbf{d}(i,j) + \boldsymbol{\mu}_{\sigma\tau} \quad (16)$$

where $i = \sigma, \sigma + 1$, $j = \tau, \tau + 1$. Moreover, from this condition we can obtain the singleton-rules (9) and the parametric expression (7). Thus we can derive a state-space expression from a parametric expression and vice versa.

We put a zero-equalibrium condition ZC to the statespace expression which states that $x = 0 \mapsto \dot{x} = 0$.

$$ZC$$
: $\boldsymbol{\mu}_{\sigma\tau} = \mathbf{0}, \quad \boldsymbol{x} \in R^o_{\sigma\tau}.$ (17)

Now we consider the stability of the fuzzy system (5). Define a Lyapunov function by $V(x) = x^T P x$, P > 0. Then the derivative of V(x) is obtained as $\dot{V}(x) = \dot{x}^T P x + x^T P \dot{x}$. We consider $\dot{V}(x)$ in a region $R_{\sigma\tau}$. From (7) we can derive two expressions:

$$\dot{V}(x) = \alpha_1 \dot{V}(\sigma, *) + (1 - \alpha_1) \dot{V}(\sigma + 1, *)$$

$$-\alpha_1 (1 - \alpha_1) E(\cdot, *)$$
(18a)

$$\dot{V}(x) = \alpha_2 \dot{V}(*, \tau) + (1 - \alpha_2) \dot{V}(*, \tau + 1)
-\alpha_2 (1 - \alpha_2) E(*, \cdot)$$
(18b)

where

$$\dot{V}(i,*) = 2h(i,*)^T P d(i,*)$$
(19a)

$$\dot{V}(*,j) = 2h(*,j)^T P d(*,j)$$

$$i = \sigma, \sigma + 1, \ j = \tau, \tau + 1$$
(19b)

where h(i,*) is the value of $\dot{\boldsymbol{x}}$ at $\boldsymbol{x} = \boldsymbol{d}(i,*)$, and $\boldsymbol{d}(i,*) = (d_1(i), d_2(*))^T$, $d_2(\tau) \leq d_2(*) \leq d_2(\tau+1)$. In a similar manner, h(*,j) and $\boldsymbol{d}(*,j)$ are defined.

$$E(\cdot, *)$$

$$= 2(h(\sigma + 1, *) - h(\sigma, *))^{T} P(\mathbf{d}(\sigma + 1, *) - \mathbf{d}(\sigma, *))$$

$$E(*, \cdot)$$

$$= 2(h(*, \tau + 1) - h(*, \tau))^{T} P(\mathbf{d}(*, \tau + 1) - \mathbf{d}(*, \tau))$$

We call the following inequalities concerning above expressions stable vertex conditions SVC and stable edge conditions SEC, respectively,

$$SVC : \dot{V}(i,j) < 0$$

$$SEC : E(i,\cdot) > -\left(\sqrt{-\dot{V}(i,j)} + \sqrt{-\dot{V}(i,j+1)}\right)^{2}$$

$$E(\cdot,j) > -\left(\sqrt{-\dot{V}(i,j)} + \sqrt{-\dot{V}(i+1,j)}\right)^{2} (22)$$

where $i = \sigma, \sigma + 1, j = \tau, \tau + 1$.

With the above preparations, we have the following (14)—stability theorem.

Theorem 1 (Stability Theorem [5],[7]) Consider a piecewise-polytopic-affine system such that

$$x(t) = A(\alpha_2)x(t) + \mu_{\sigma\tau}, \quad x(t) \in R_{\sigma\tau}$$

$$A(\alpha_2) = \alpha_2 S(\tau) + (1 - \alpha_2)S(\tau + 1).$$

where $\mu_{\sigma\tau} = 0$ in $R^o_{\sigma\tau}$.

The system is asymptotically stable in the large if there exists a common P > 0 such that

- (1) in the zero-square, SVC, SEC and SZC are satisfied, where $SZC: -A(\alpha_2^o)^TP PA(\alpha_2^o) > 0$,
- (2) in the other regions, SVC and modified SEC are satisfied, where SEC:

$$\begin{split} E(i,\cdot) & \geq & -\bigg(\sqrt{-\gamma(i,j)\dot{V}(i,j)} \\ & + \sqrt{-\gamma(i,j+1)\dot{V}(i,j+1)}\bigg)^2 \\ E(\cdot,j) & \geq & -\bigg(\sqrt{-(1-\gamma(i,j))\dot{V}(i,j)} \\ & + \sqrt{-(1-\gamma(i+1,j))\dot{V}(i+1,j)}\bigg)^2 \end{split}$$

where

$$0 < \gamma(i, j) < 1, \quad i = \sigma, \sigma + 1, \ j = \tau, \tau + 1.$$

We assume that the equalities do not hold at the same time in the above inequalities.

3. Stabilizing Control

In this section, we consider a state-feedback stabilizing control of the type II fuzzy systems and present a stabilization algorithm for the model-based design of the type II fuzzy controllers.

In the sequel we shall restrict the object of control to the following (non)linear system:

$$\dot{\boldsymbol{x}} = f(\boldsymbol{x}) + \boldsymbol{b}\boldsymbol{u} \tag{23}$$

where f(x) is a function vector, b is a constant vector and u is a scalar input.

Consider a state-feedback fuzzy controller of type II

if
$$x$$
 is $G^{\sigma\tau}(x)$, then u is $l(\sigma,\tau)$. (24)

We obtain a parametric expression of the above fuzzy controller

$$u(t) = \alpha_1 \alpha_2 l(\sigma, \tau) + \alpha_1 (1 - \alpha_2) l(\sigma, \tau + 1) + (1 - \alpha_1) \alpha_2 l(\sigma + 1, \tau)$$

$$+ (1 - \alpha_1) (1 - \alpha_2) l(\sigma + 1, \tau + 1).$$
(25)

Define

$$a_1 = \frac{l(\sigma+1,\tau) - l(\sigma,\tau)}{d_1(\sigma+1) - d_1(\sigma)}$$
 (26a)

$$a_2 = \frac{l(\sigma, \tau + 1) - l(\sigma, \tau)}{d_2(\tau + 1) - d_2(\tau)}$$
 (26b)

$$a_1^+ = \frac{l(\sigma+1, \tau+1) - l(\sigma, \tau+1)}{d_1(\sigma+1) - d_1(\sigma)}$$
 (27a)

$$a_2^+ = \frac{l(\sigma+1,\tau+1) - l(\sigma+1,\tau)}{d_2(\tau+1) - d_2(\tau)}.$$
 (27b)

Then we also obtain a state-space expression

$$u(t) = c_{\sigma\tau}^T x + \xi_{\sigma\tau}, \quad x \in R_{\sigma\tau}$$
 (28)

$$\xi_{\sigma\tau} = \alpha_{1}^{o} \alpha_{2}^{o} l(\sigma, \tau) + \alpha_{1}^{o} (1 - \alpha_{2}^{o}) l(\sigma, \tau + 1) + (1 - \alpha_{1}^{o}) \alpha_{2}^{o} l(\sigma + 1, \tau)$$
(29)
$$+ (1 - \alpha_{1}^{o}) (1 - \alpha_{2}^{o}) l(\sigma + 1, \tau + 1)$$

where for $\mathbf{x} \in R_{\sigma\tau}^o$ $\xi_{\sigma\tau} = 0$. Though the vector $\mathbf{c}_{\sigma\tau}$ has two equivalent expressions, we shall use the following expression coressponding to (14) and (15).

$$\boldsymbol{c}_{\sigma\tau} : \alpha_2 \boldsymbol{k}(\tau) + (1 - \alpha_2) \boldsymbol{k}(\tau + 1)$$
 (30)

$$\mathbf{k}(\tau) = (a_1, \alpha_2^o a_2 + (1 - \alpha_2^o) a_2^+)^T$$
 (31a)

$$\mathbf{k}(\tau+1) = (a_1^{\pm}, \alpha_2^o a_2 + (1-\alpha_2^o)a_2^{\pm})^T$$
. (31b)

Applying the fuzzy control (24) to the fuzzy system (1), we obtain a closed-loop system

if
$$x$$
 is $G^{\sigma\tau}(x)$, then \dot{x} is $h(\sigma,\tau) + bl(\sigma,\tau)$ (32)

where the singleton consequent in (32) means the value of f(x) + bu in (23) for $x = d(\sigma, \tau)$.

From (7) and (25), we can derive a parametric expression of the closed-loop system (32)

$$\dot{x} = \alpha_1 \alpha_2 \hat{h}(\sigma, \tau)
+ \alpha_1 (1 - \alpha_2) \hat{h}(\sigma, \tau + 1)
+ (1 - \alpha_1) \alpha_2 \hat{h}(\sigma + 1, \tau)
+ (1 - \alpha_1) (1 - \alpha_2) \hat{h}(\sigma + 1, \tau + 1)$$
(33)

where

$$\hat{\boldsymbol{h}}(i,j) = \boldsymbol{h}(i,j) + \boldsymbol{b}l(i,j). \tag{34}$$

And also, from (12) and (28) we can derive a statespace expression of the closed-loop system

$$\dot{\boldsymbol{x}} = \hat{A}_{\sigma\tau} \boldsymbol{x} + \hat{\mu}_{\sigma\tau} \tag{35}$$

$$\hat{\mu}_{\sigma\tau} = \alpha_1^o \alpha_2^o \hat{h}(\sigma, \tau) + \alpha_1^o (1 - \alpha_2^o) \hat{h}(\sigma, \tau + 1) + (1 - \alpha_1^o) \alpha_2^o \hat{h}(\sigma + 1, \tau) + (1 - \alpha_1^o) (1 - \alpha_2^o) \hat{h}(\sigma + 1, \tau + 1)$$
(36)

where

$$\hat{A}_{\sigma\tau} = A_{\sigma\tau} + bc_{\sigma\tau}^T, \tag{37a}$$

$$\hat{\mu}_{\sigma\tau} = \mu_{\sigma\tau} + b\xi_{\sigma\tau}. \tag{37b}$$

It is seen that the closed-loop systems (33) and (35) are of the same forms as (7) and (14), respectively. Therefore, it is possible to apply Theorem 1 for the feedback control system. Our idea for stabilizing control is to assign vertices by adjusting the singleton consequents of a control law so that the closed-loop system satisfies the stability conditions. We assume that for

all regions, extreme affine systems are controllable in order to guarantee the vertex-assignment[6].

Now we discuss a stabilization algorithm.

We consider the problem of finding a feedback control u(x) for the fuzzy system (32) with the following properties:

- (i) it achieves asymptotic stability of the equilibrium x = 0.
- (ii) it minimizes the cost function

$$J = \int_0^\infty (Q(\boldsymbol{x}) + R(u)) dt$$
 (38)

where Q(x) > 0, R(u) > 0 for all $x \neq 0$, $u \neq 0$.

Generally it is not a simple task to solve the problem for a fuzzy system or a nonlinear system. Here we will take an inverse-problem-approach of optimal control. For a certain P>0, we first assume an optimal control law at each vertex as

$$l(i,j) = -\frac{1}{r(i,j)} \mathbf{b}^T P \mathbf{d}(i,j),$$

$$r(i,j) > 0, \ P > 0, \ i = \sigma, \sigma + 1, \ j = \tau, \tau + 1.$$
(39)

For an unforced system where l(i,j) = 0 in (39), the derivative of $V(x) = x^T P x$ is obtained as

$$\dot{V}_{\sigma} = 2[\alpha_{1}\alpha_{2}\boldsymbol{h}(\sigma,\tau) + \alpha_{1}(1-\alpha_{2})\boldsymbol{h}(\sigma,\tau+1)
+ (1-\alpha_{1})\alpha_{2}\boldsymbol{h}(\sigma+1,\tau)
+ (1-\alpha_{1})(1-\alpha_{2})\boldsymbol{h}(\sigma+1,\tau+1)]^{T}P
[\alpha_{1}\alpha_{2}\boldsymbol{d}(\sigma,\tau) + \alpha_{1}(1-\alpha_{2})\boldsymbol{d}(\sigma,\tau+1) \quad (40)
+ (1-\alpha_{1})\alpha_{2}\boldsymbol{d}(\sigma+1,\tau)
+ (1-\alpha_{1})(1-\alpha_{2})\boldsymbol{d}(\sigma+1,\tau+1)].$$

Denote \dot{V}_o at each vertex as $\dot{V}_o(i,j)$. We have

$$\dot{V}_o(i,j) = 2h(i,j)^T P d(i,j), \qquad (41)$$

$$i = \sigma, \sigma + 1, \ j = \tau, \tau + 1.$$

Set $R(u) = -u(x)b^T Px$ and denote R(u) at each vertex as R(i, j). R(i, j) is expressed as

$$R(i,j) = -l(i,j)b^{T}Pd(i,j)$$

$$= r(i,j) l(i,j)^{2}$$

$$= \frac{(b^{T}Pd(i,j))^{2}}{r(i,j)}$$

$$(42)$$

where r(i,j) > 0. $i = \sigma, \sigma + 1$ and $j = \tau, \tau + 1$. Now V for a control input $\frac{1}{2}u(x)$ is expressed as

$$\dot{V}_{\frac{1}{2}u} = \dot{V}_o - R(u). \tag{43}$$

Setting $Q(x) = -\dot{V}_{\frac{1}{2}u}$, we obtain

$$\dot{V} = -Q(x) - R(u)
= \dot{V}_o - 2R(u).$$
(44)

Therefore, if R(u) > 0 and $V_{\frac{1}{2}u} < 0$, i.e., Q(x) > 0, we can say that u composed of (39) is an optimal control law.

Hence, the strategy of a stabilization alogorithm is as follows: We first set an appropriate J. Then we assign vertices so that (i) R(i,j) > 0 and (ii) $\dot{V} < 0$ for $\forall x$ in the inside of a region; as for R(u), we do not require that R(u) > 0 in the inside of a region.

[Stabilization algorithm]

(step 1) Check the controllability of the system.

In each region we check the controllability of extreme systems in order to guarantee the vertex-assignment. (step 2) Set a base system and parameters.

In the zero-square by setting $\alpha_2 = \alpha_2^o(\equiv \alpha_2(0))$ we

$$\dot{\boldsymbol{x}} = S_o \boldsymbol{x} + \boldsymbol{b}\boldsymbol{u}, \quad \boldsymbol{x} \in R_{\sigma\tau}^o \tag{45}$$

$$S_{\alpha} = \alpha_2^{\circ} S(\tau) + (1 - \alpha_2^{\circ}) S(\tau + 1).$$
 (46)

We use (45) as a base system for all regions.

Then we assume that $x^TQ_ox + r_ou^2$ where $Q_o > 0$, $r_o > 0$ and set an optimal u as $u_z = -\frac{1}{r_o}bP_ox$. As usual P_o is obtained by a Ricatti equation. We use this P_o as a common P for all regions. We have for u_z

$$\dot{V}_z = -x^T Q_o x - r_o u_z^2 \tag{47}$$

and at vertices

have

$$\dot{V}_z(i,j) = -d(i,j)^T Q_o d(i,j) - r_o u_z(i,j)^2$$
 (48)

$$u_z(i,j) = -\frac{1}{r_o} \boldsymbol{b}^T P_o \boldsymbol{d}(i,j). \tag{49}$$

We set a range of control input as $u_r \ge |u| > 0$, which will be used in (step 5).

(step 3) Determine a control law at each vertex.

At each vertex we determine the parameters r(i, j) in (39) such that

$$\dot{V}(i,j) \leq \dot{V}_z(i,j) , \quad \forall i,j .$$
 (50)

We introduce a parameter c in order to bring about a damping effect. We consider two cases.

(i) For the case that $\dot{V}_o(i,j) > \dot{V}_z(i,j)$.

Denote the maximum of feasible r(i,j) by r_s where r_s is obtained as

$$r_s(i,j) = \frac{2(b^T P_o d(i,j))^2}{\hat{V}_o(i,j) - \hat{V}_c(i,j)} > 0.$$
 (51)

Applying a parameter c to (51), we set an upper bound r^* as

$$\frac{1}{r^*(i,j)} = \frac{1}{r_s(i,j)} + c, \qquad c > 0 \quad (52)$$

(ii) For the case that $\dot{V}_o(i,j) \leq \dot{V}_z(i,j)$.

Since a closed-loop system satisfies already (50), we can say that u = 0 is a candidate of stabilizing control laws. In this case we try to reduce $\dot{V}(i,j)$

as much as possible by setting an upper bound r^* as follows :

$$\frac{1}{r^*(i,j)} = c, \qquad c > 0 \tag{53}$$

Finally we determine the values of r(i, j) in the interval $(0, r^*(i, j)]$ given by (52) or (53).

(step 4) Check the stability of a closed-loop system. Using r(i,j) and a common $P_o > 0$, we check the stability of a closed-loop system in each region. If a system satisfies the stability conditions of Theorem 1, the l(i,j) obtained from r(i,j) gives a stabilizing control law. if not, we set $V_z(i,j) = 0$ and then excute (step 3).

(step 5) Improve a damping effect.

Using l(i,j) obtained from (step 4) we calculate the maximum value of control input denoted by $l_m = \max_{i,j} |l(i,j)|$. And we change the parameter c in (52) or (53) and then iterate (step 3) and (step 4) until the maximum value falls in an allowing range, for instance, $0.99u_r \leq l_m \leq u_r$.

4. Design Example

We design a stabilizing controller for a type II fuzzy model of the well-known Van der Pol system

$$\dot{x}_1 = x_2
\dot{x}_2 = -x_1 + \epsilon (1 - x_1^2) x_2 + u.$$
(54)

where $x_1 \in [-2.5 \ 2.5], x_2 \in [-3.5 \ 3.5], u \in [-15 \ 15]$ and $\epsilon = 1$. Table 1 shows the vertex condition of an approximated fuzzy model where the number of regions is 45. And Fig. 2 shows the nonlinearity of system (54).

We illustrate a design process of a type II fuzzy con-

(step 1) This system is controllable for all regions. (step 2) In the zero-square S_o and \boldsymbol{b} are

$$S_o = \begin{pmatrix} 0.00 & 1.00 \\ -1.00 & 0.99 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Using the above parameters, a base system is obtained from (45). We choose

$$Q_o = \begin{pmatrix} 10.0 & -3.1 \\ -3.1 & 1.0 \end{pmatrix}, r_o = 1$$

By solving a Ricatti equation, we obtain

$$P_o = \begin{pmatrix} 12.6192 & 2.3166 \\ 2.3166 & 3.5616 \end{pmatrix}.$$

We use this P_o as a common P for all regions. And we calculate $\dot{V}_z(i,j)$ in (49) which is shown in Fig. 3. From (54) we set a range of control input as $u_r = 15$. (step 3, 4 and 5) From (52) or (53) we set $c = 2^{-52}$ and calculate $r^*(i,j)$. We initially choose r(i,j) as the upper bound $r^*(i,j)$. And then check the stability of the closed-loop system. In this example the closed-loop system satisfies the stability conditions for all regions.

Thus from (step 5) we have c = 0.1572. We can verify the stability with the vertex condition in (16) for the values of parameters $\gamma(i,j)$ of SEC in Theorem 1 which are shown in Table 2.

The designed control law is shown in Table 3. Fig. 4 shows the input-outur relation of the fuzzy controller, where we see that the relation is nonlinear.

Fig. 5 shows the variable \dot{x}_2 of the closed-loop system on the state-space. We know that the surface of \dot{x}_2 is similar to a plane, i.e., linear.

For all regions of the closed-loop system, V is shown in Fig. 3 where we see that the inequality (50) almost holds. Fig 6 and Fig 7 show phase potraits of the open-loop system (dotted line) and the closed-loop system (solid line) for the initial states $\mathbf{x}(\mathbf{0}) = (2.25, 0)^T$ and $\mathbf{x}(\mathbf{0}) = (0.25, 0)^T$, respectively. The open-loop system has limit cycle. We find that the closed-loop system converges to the origin (0,0) for both inner and outer initial states of the limit cycle.

5. Conclusion

We have discussed the stability of a type II fuzzy system and presented a stabilization algorithm based on an inverse-problem-approach of optimal control. A design example has been shown for the Van der Pol system.

References

- [1] M.Sugeno and T.Takagi, "A New Approach to Design of Fuzzy Controller," in P.P. Wang ed., Advances in Fuzzy Sets and Possibility Theory, and Applications, Plenum, 1983.
- [2] C. Jianqin and C. Laijiu, "Study on Stability of Fuzzy Colsed-Loop Control Systems," Fuzzy Sets and Systems, Vol. 57, 159/168, 1993.
- [3] T.A.Johansen, "Fuzzy Model Based Control: Stability Robustness and Performance Issues," *IEEE Trans. on Fuzzy Systems*, Vol. 2, 221/233, 1994.
- [4] H.O.Wang et al., "An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues." IEEE Trans. on Fuzzy Systems, Vol. 4, 14/23, 1996.
- [5] M.Sugeno. "On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents." submitted to IEEE Trans. on Fuzzy Systems
- [6] C.-H. Lee and M. Sugeno, "Stabilizing Control of Fuzzy System with Singleton Consequents," Proc. of 13th Fuzzy System Symposium, 13/16, 1997. (in Japanese)
- [7] M. Sugeno and C.-H. Lee "Stabilizing Control of Fuzzy System with Singleton Consequents," submitted to J. of Japan Society for Fuzzy Theory and Systems (in Japanese)

Table 1 Fuzzy model of Van der Pol system

$h_2(d_1,d_2)$		$d_2(1)$	$d_2(2)$	$d_2(3)$	$d_{2}(4)$	$d_2(5)$	$d_2(6)$
		-3.5	-1.5	-0.3	0.3	1.5	3.5
$d_1(1)$	-2.5	20.875	10.375	4.075	0.925	-5.375	-15.875
$d_1(2)$	-1.7	8.315	4.535	2.267	1.133	-1 135	-4.915
$d_1(3)$	-1.0	1.000	1.000	1.000	1.000	1.000	1.000
$d_1(4)$	-0.5	-2.125	-0.625	0.275	0.7250	1.6250	3.125
$d_1(5)$	-0.1	3.365	-1.385	-0.197	0.397	1.585	3.565
$d_1(6)$	0.1	-3,565	-1.585	-0.397	0.197	1.385	3.365
$d_1(7)$	0.5	-3.125	-1.625	-0.725	-0.275	0.625	2.125
$d_1(8)$	1.0	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000
$d_1(9)$	1.7	4.915	1.135	-1.133	-2.267	- 1,535	-8.315
$d_1(10)$	2.5	15.875	5.375	-0.925	-4.075	-10.375	-20.875

Table 2 A example of parameter γ

region	$\gamma(\sigma, au)$	$\gamma(\sigma, \tau+1)$	$\gamma(\sigma+1,\tau)$	$\gamma(\sigma+1,\tau+1)$
$[d_1(4) \ d_1(5)] \times [d_2(3) \ d_2(4)]$	0.500	0.500	0.969	0.857
$[d_1(6) \ d_1(7)] \times [d_2(3) \ d_2(4)]$	0.857	0.969	0.500	0.500
the other region $(x \notin R_{\sigma_{\tau}}^{\sigma})$	0.500	0.500	0.500	0.500

Table 3 Fuzzy controller of Van der Pol

$l(d_1,d_2)$		$\frac{d_2(1)}{3.5}$	$\frac{d_2(2)}{-1.5}$	$\frac{d_2(3)}{-0.3}$	$\frac{d_2(4)}{0.3}$	$\frac{d_2(5)}{1.5}$	$\frac{d_2(6)}{3.5}$
		3.0					
$d_1(1)$	-2.5	2.8700	3.5243	6.0665	7.3375	9.8797	-1.0492
$d_1(2)$	-1.7	8.9027	6.4197	4.9298	4.1849	-0.2207	-1.3405
$d_1(3)$	-1.0	13.6412	7.3781	3.6203	1.7413	-2.0165	-8.2796
$d_1(4)$	-0.5	14.9258	7.1627	2.5049	0.1759	-4.4819	-12.2450
$d_1(5)$	-0.1	14.6934	6,4504	1.5045	-0.9684	-5.9142	-14.1573
$d_1(6)$	0.1	14.1573	5.9142	0.9684	-1.5015	-6.4504	-14.6934
$d_1(7)$	0.5	12.2450	4.4819	-0.1759	-2.5049	-7.1627	-14.9258
$d_1(8)$	1.0	8.2796	2.0165	-1.7413	-3.6203	-7.3781	-13.6412
$d_1(9)$	1.7	1.3405	0.2207	-4.1849	-4.9298	-6.4197	-8.9027
$d_1(10)$	2.5	1.0492	-9.8797	-7.3375	-6.0665	-3.5243	-2.8700

Fig. 2 State-space representation of \dot{x}_2 (open-loop system)

Fig. 3 V_z (above) and \tilde{V} (bellow)

Fig. 4 Fuzzy controller

Fig. 5 State-space representation of Fig. 6 Phase portrait for $x(\mathbf{0}) = \text{Fig. 7 Phase portrait for } x(\mathbf{0}) = \dot{x}_2 \text{ (closed-loop system)}$ $(2.25, 0)^T$ $(0.25, 0)^T$