An automated neural network design from a well organized data set

정제된 데이터를 이용한 신경망의 설계 자동화에 관한 연구

  • 백주현 (군장대학 멀티미디어과) ;
  • 김홍기 (충북대학교 전자계산학과)
  • Published : 1998.03.01

Abstract

본 논문에서의 공학적인 체계성을 갖고 초기 연결 가중치 및 임계치를 결정해 주면서, 학습까지 가능한 신경망을 제안한다. 기존의 오류 역전파 신경망을 적용할 때 경험에 의하여 은닉층 노드수를 결정하거나 임의의 실수 값으로 초기 연결 가중치 및 임계값을 주었을 때 자주 발생하는 학습 마비 현상을 피할 수 있고, Bose가 제안된 Voronoi 공간 분류에 의한 신경망 구성에서 학습이 불가능하다는 제안적인 단점을 보안하였다. 초기 가중치는 Voronoi 공간 분류가 이루어져 있다고 할 때 Bose가 제안한 초기 가중치 결정법을 개선하여 사용하고, Bose의 경우 신경망 노드가 Step function을 이용하여 정보를 전달하였으나 본 연구에서는 학습이 가능한 함수인 Sigmoid function을 이용하였다. 제안된 새로운 신경망의 성능 및 효율성을 비교하기 위하여 선형분리가 불가능한 XOR문제를 실험한 결과, 기존의 학습 가능한 EBP에서 허용오차 0.05 수준일 때 80%정도 학습마비 현상이 발생하였던 심각한 문제점을 보완할 수 있었고, 또한 학습 속도면에서 8~9배 정도 빠른 성능을 나타내었다.

Keywords