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INTRODUCTION

Transport in the environment is described by the convection diffusion equation or
the transport equation. The transport equation is a mixed type of partial differential
equation which has both hyperbolic and parabolic characteristics. A difficulty in the
analysis of the transport equation lies in that the solution strategy should be chosen
according to the characteristic of the given problem. That is, if the parabolic feature
of the problem is stronger than the hyperbolic feature, then a numerical modeler does
not have to concern numerical oscillations because the dispersion term naturally
smoothes the solution. However, in the reversed case, the modeler needs to introduce
a special dissipative tool for the convection term because of a possible generation of
the steep gradient in the numerical solution. In the latter case, mostly, the upwinding
concept should be introduced to protect the solution from the downwind
contamination (Christie et al.,, 1976 ; Heinrich et al,, 1977 ; Brooks and Hughes,
1982 ; Westerink and Shea, 1989). This can be easily achieved, if the finite
difference method is employed, by using upwind type schemes such as the backward
difference scheme, MacCormack scheme, or Beam and Warming scheme.

The conventional finite element method (or Bubnov Galerkin method) is very
powerful for the boundary value problem in which governing equations are
self-adjoint elliptic partial differential equations. However, the Galerkin method is not
so efficient for problems which have non-self-adjoint equations such as convection-
diffusion problems. This equation can be characterized by a non-dissipative
convection process and a dissipative diffusion process. When dissipative processes
dominate the transport phenomenon, one can get a good solution using the
conventional Galerkin method. However, when the non-dissipative convection process
is dominant, the partial differential equation behaves as a first-order hyperbolic partial
differential equation which describes a pure wave propagation with a finite celerity.
Therefore, the numerical solution may form or maintain a sharp front. When the
conventional Galerkin method with linear basis functions is applied to this problem,
oscillations or dissipations are encountered in the numerical solution. Specifically, in
the one-dimensional case, the finite element scheme can be easily shown to become
centered difference finite difference scheme. Since the numerical errors arise from the
symmetric treatment of the convection terms in the conventional finite element
method, the test functions are modified in order to give more weight in the upwind
direction as commonly done in the finite difference method. This technique is referred
to as "the Petrov-Galerkin (PG) method.”

In this paper, a new Petrov-Galerkin method, termed as "Optimal Test Function
Petrov-Galerkin (OTFPG) Method" is proposed. The test function of this numerical
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method changes its shape depending upon relative strength of the convection to the
diffusion. A numerical experiment is carried out to demonstrate the performance of
the proposed method.

FINITE ELEMENT FORMULATION

Consider the following one-dimensional transport equation:

dc _ pd% _ . dc

ot D ox u o (1)
which is a parabolic partial differential equation. In general, one encounters the
numerical instabilities due to convection term when the mesh size (4x) is such that

the grid Peclet number

Pe= 24555 ~ 5 @)

which indicates the relative dominance of the convection to the diffusion. The
weighted residual from of eq.(1) is written as
_dc dc ow - pdc
f{( ot Jw + D ox 0x }dx = Doy | boundars )
where w is a test function. After the assembly process, one can get a global system
of matrix differential equation such as

@_ v__ a —
Mdt (A"—A%) ¢c=P (4)

where ¢ = vector of nodal unknowns, M = mass matrix, A"’ = convection stiffness
matrix, A¢ = diffusion stiffness matrix, and P = convective and diffusive boundary
flux forcing vector. In the conventional Galerkin method, the basis function of the
trial solution is the same as the basis function of the test function. However, the PG
method employs the test function whose basis function is different from the basis
function of the trial solution. The numerical oscillations encountered in the numerical
analysis of the convection dominant flow comes from the non-symmetry of the
stiffness matrix due to A”. Therefore, the PG formulation was devised to recover the
symmetry of the stiffness matrix to some extent.

OPTIMAL TEST FUNCTION METHOD

Before introducing the OTFPG method, it may be worth to Optimal Test Function
(OTF) method by Celia et al. (1989a). Consider an operator form of the
one-dimensional transport equation such as

2
Lc = D%—u% = %*f(x). O<x=/ ®)
with the following boundary conditions:
c0) = g and o) = g (6)
The weak form of eq.(15) is
fl(L Yw(x)dx = f[(ﬁ - Rx t))w(x)dx (7)
o T UAE o\ ot ’

where w(x) is a test function. If we discretize the domain into E sub-intervals with
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E+1 nodal points, then eq.(7) can be written as
{ = X
[oua = [ (Lo wwax ®)
Integrating by parts the RHS of eq.(7) after applying eq.(15), we have
! = S dc o o de dw
fo(Lc)w(x)dx = E{[Dwdx—uwc] . fx (Ddx —uc) e dx} 9

[

Another integration by parts of the second term of the RHS of eq.(9) yields

fol(Lc) w(x)dx= Z}{ [Dw% - D%xu—} c— uwc] :l + f:l (L'w)c(x)dx} (10

where L is the formal adjoint of L. If one takes a test function which satisfies
L*w=( within each element, the following relationship should be hold:

! _ - _Q._]_Q _ Q _ Xy
fO(Lc)w(x)dx = E}{[Dwdx Dwdx uwc] . (11)
Then, we have the following final form of equation from the OTF method:
{ _ = QI_C_ dC/:
fO(Lc)w(x)dx = E){[Dwdx +uw]x]c,- - [Dw] .~ } (12)

+ [(—D‘f—g — uw)c+(Dw)%];

where [ ] is a jump operator defined as

(-1, =10-1., —[-1, (13)

If explicit forms of w(x) can be derived, eq.(12) leads to (2E+2) X (2E+2) algebraic
equations, a 5 bandwidth matrix. The unknowns are essentially nodal values of
function ¢, and their derivatives, i.e., [c;, dc;j/dx]’=,. Notice that no approximation
has been introduced in the formulation so far. However, the homogeneous adjoint
equation exhibits non-constant coefficients and cannot be solved exactly, in general.

OPTIMAL TEST FUNCTION PETROV-GALERKIN METHOD

The main idea of the OTFPG method comes from the application the test function
of the OTF method to the PG method. That is, instead of solving eq.(12), one can
use the test function satisfying L*w =0 from eq.(10) in the PG formulation. In order
to obtain the test function, the following equation should be solved:

d*w
&
which is a second-order homogeneous linear ordinary differential equation. We, thus,
have two fundamental solutions which are linearly independent, i.e.,

wi(x) =1 (15a)

wo(x) = expl — («/D)x] (15b)

.o dw _
L'w =D +ua’x 0 (14)

Any linear combination of these solutions can be a solution of eq.(14). However, we
have the following two restrictions for w, to be test functions:

wi(x) =1, w(dx) =0 (16a)

- 2061 -



wy(x) =0, wy(dx) =1 (16b)

After applying the fundamental solutions of eq.(14) into eq.(15), we have two
particular solutions such as
exp(— wx/ D) — exp(— udx/D)

1—exp(— wux/D)
1 —exp(— udx/D)

Fig.1 shows test functions from eq.(17), which have various shapes depending
upon the relative strength of convection term to the dispersion term. When w/D = 0.1
m”, the test functions in Fig.1(a) are nearly the same as linear shape functions, and
when /D is increased up to 2000.0 m”, the test functions in Fig.9(d) have a shape
like a step function.

wl(x):

wy(x) = 0<x<dx (17b)

APPLICATION EXAMPLE

A convection-dominated transport problem (D = 2.5 x 10° m%day, u = 0.05
m/day) is solved to demonstrate the applicability of the proposed OTFPG method. An
initial condition of ¢(x,¢=0)=0 is used, and such boundary conditions as

ad
<uc—D~é§>x=0= UC foeq (18a)
c(x—00,H=0 (18b)

are used at the upstream and the downstream boundaries, respectively. Values of
Crea=1.0, 4t=1.0 day, and Jx=0.05 m are used in the computation, resulting Cr
= 1 and Pe = 100. The grid Peclet number is large enough to cause oscillations in
the numerical solutions. Computed results are presented in Fig.2, which shows
excellent agreement between the analytical and numerical solutions. This illustrates
the capability of the numerical method which removes fictitious oscillations around
the high-gradient area in the solution while maintaining a quite steep front.

CONCLUSIONS

A new PG method, termed as optimal test function Petrov-Galerkin method, is
introduced in this paper. The test functions of the new method are functions of a
grid Peclet number so that they change their shapes depending upon the
characteristic of the transport problem. The new method was applied to a
convection-dominated transport problem, and was found to yield excellent
agreement between the analytical and the numerical solutions. The present study
explicitly indicates that the test functions of the PG method should be a function
of a grid Peclet number once the Courant restriction is satisfied in the
convection-dominated transport problem.
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Figure 1. Test Functions of Optimal Test Function Petrov—Galerkin Method
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Figure 2 (b). Concentration Profile at 100 days



