Automatic Camera Control Based On Avatar Behavior
in Virtual Environment
Moon-Ryul Jung
Department of Computer Science
College of Information Science

Soongsil University, Korea

Abstract

This paper presents a method of controlling camera to present virtual space to
participating users meaningfully. The users interact with each other by means of dialcgue and
behavior. Users behave through their avatars. So our problem comes down to controling the
camera to capture the avatars effectively depending on how they interact with each other. The
problem is solved by specifying camera control rules based on cinematography developed by film
language is designed to encode cinematography rules for virtual

producers, A formal

environments where people can participate in the story and can influence its flow. The rule

has been used in a 3D chatting system we have developed,

I. Introduction

In immersive virtual environment systems, the scene
is typically captured from the viewpoint that is
attached to the user’s avatar. A user’s avatar is
the agent within space that represents the user
outside of space. The avatar behaves in behalf of
the user either by directly following the user’s
behavior, i,e. head movement and hand movement, or
by interpreting the user’s gestures, 1i.e. hand
gesture or mouse movement, In virtual environment
systems that support the sense of immersion in
space, e.g. by means of the head mount display, the
avatar’'s viewpoint is typically controlled by the
head movement of the user. In other words, the space
is always seen from the first person viewpoint,
because it is required to support the sense of depth
that is due to motion parallax.

Even if it is available, the immersive first person
perspective alone is not suitable for virtual
environments where users are supposed to respond to
events, e.g. the appearance of another user in the
environment, To respond to events, the users should
be able to recognize their occurrences even when the
events occur outside of the present field of view.
One way to indicate occurrences of events outside of

the field of view is to associate 3D sounds with
events, When the user hears a 3D sound, the user can
recognize where that sound has originated, and
thereby can change the viewpoint to observe the
event, Hence at least 3D sound capability seems to
be required if we want to use the immersive first
person perspective for virtual envirionments where
users interact with the environment and with each
other, But at the moment, 3D sound is too expensive
to support at least for ordinary PC applications.
There may be many virtual envirionment applications,
e.g. 3D chatting, where the immersive first person
viewpoint is not cost effective. Therefore, the
immersive first person viewpoint is not yet the
method of cheice for camera control for virtual
environments.

¥hen the sense of immersion is not supported, the
scene is seen through the computer screen without
any 3D output devices, In that case, we often use
viewpoints other than the first person viewpoint,
because they are often more effective in
communicating to users what is going on in the
environment., This paper describes a method to
control the viewpoint of the camera for virtual
enviromment systems where the immersive first person
viewpoint is not used,

— 55—

The first person viewpoint is attached to the head
of the user’s avatar. So, in the case of the first
person viewpoint, it is automatically determined by
the posture of the avatar, turn
controlled by the avatar’s body movement, Hence the
user does not need to control the avatar’s viewpoint
explicitly, But to use other viewpoints, they should
be controlled in addition to the avatar’s body
movement. However, it is hard for the user to
control the viewpoint of the camera as well as the
body wmovement at the For
in 3D chatting systems where users talk to

which 1is in

avatar’s time.
example,
each other through their avatars in the same space,
users are busy with typing sentences and indicating
behaviors of their avatars. It would be too much if
they are required to control the viewpoint as well,
In such systems, the camera should be controlled
automatically so that users may concentrate on their
main task, 1i.e. interaction with other
Automatic camera comes down 1o
automatically computing the position and orientation
of the camera so that the user may understand better
what is going on in the scene and may feel less
bored at the scene. we need camera
placement rules for determining appropriate camera
positions and orientations so that the resulting
pay cover important states and events
cccurring in the environment, In this paper, we
design those rules based on cinematography, a
collection of heuristic camera placement . rules
developed by film producers, Cinematography contains
camera manipulation rules for effective scene
composition and flow of story. To use the rules for
virtual environment applications, we need to encode
them in a certain form.

same

users.
control

To do so,

scene

virtual
that is,
user-dependency

To encode cinematography rules for
environment applications, three
language, context-dependency
should be addressed. First, cinematography manuals,
e.g. Arijonfl)] and Mascellifd], provide heuristic
camera placement rules for various situations, e, g,
a situation of three persons talking. Arijon [i]
uses the concept of line of interest for a given
situation relative to which cameras are placed. The
line of interest is the line connecting the heads of
the two primary actors. The line of
divides the plane into two sides. It is believed
that the audience wants to observe the actors on the
line of interest from a viewpoint in one side of the

issues,
and

interest

plane, He{3] tried to encode cinematography by means
of a state transition automata. But this encoding
has been done without analyzing the problem of
automatic camera control sufficiently, The language
used to encode cinematography rules is not clearly
defined, and many important concepts and parameters
are hidden in the € code. We need an intuitive but a
sufficiently f{ine-grained language that provides a

framework in which expert knowledge for camera
placement can be encoded easily.

Second, traditionally cinematography rules are
developed for films whose scenarios are

predetermined, So a sequence of camera shots for a
given film is also predetermined. David[2] suggested
a method to plan a sequence of camera placements for

a given sequence of scenes, But in virtual
environments, the flow of events is not
predetermined, so that a sequence of camera shots

cannot be pre-planned and should be determined in a
context-dependent manner. A given application needs
a procedure that determines the camera placement for
the current moment based on the current situation.
This is what we call context-dependency. Third, in
films, situations are taken from three kinds of
viewpoints., One is the viespoint of a participant
of the story. The other is the quasi participant
viewpoint which captures the scene from a viewpoint
around a participant, e.g. over the shoulder of a
participant, The last viewpoint is the neutral
viewpoint or non-participant viewpoint which
captures the whole situation in a neutral viewpoint,
In virtual environment applications where the
impersive first person viewpoint is not supported,
the scene is taken basically in the same manner as
in films. But because the audience is also an actor
that participates in the scene, there are some
limits in making the audience assume the roles of
participants, For example, when two persons are
talking, the user that speaks would like to see the
reaction of the hearer, rather than his own face.
The speaker already knows what his avatar is doing,
because the speaker dictates the avatar’'s behavior,
As long as the user speaks, it is not natural to
make him assume the role of the hearer, In the same
reason, the user whose is the hearer would like to
see the speaker rather than his own behavior. This
is what we call user-dependency. He[3] did not
consider user-dependency in encoding cinematography
rules, When encoding camera placement rules, we need
to take it into account.

— 56—

In this paper, camera placement rules are devised
having in mind the three issues, 1i.e, language,
context-dependency and user-dependency. The rules
are designed for a 3D chatting system,

Z. 3D Chatting System

in this paper, camera placement rules are designed
for a 3D chatting system. So, the overall structure
of the system is briefly described.

input Command
\E{ Command

Loat Splection RUe SCripy

Script interpreter
Cinematography
Ruls Script

Behavior
Rule Scripe

Motion of Avatar | Primitive Sceme
[Motion Generator | Camera Graph
Function
‘ Viewer J

Figure 1 The overall flow of the 3D chatting

system

shown in figure 1, works in a
typical Each user types in
sentences and action commands for his avatar. The
system puts the sentences in dialogue bubbles as in
cartoon and generates the behavior of the avatars as
requested by the users. The behavior of avatar User
is produced by calling a callback function
exec_scipt{ User) and thus executing the behavior
script written for avatar User, The callback
function is called when there are no other events
pending. The function tells the script interpreter
to execute the behavior script. Also, when there are
no events pending, the system calls a callback
function exec script(camera), which tells the script
interpreter to execute the script for camera. The
camera script consists of goal selection rules and
goal achievement rules, Goal selection rules are
used to select a camera placement goal whose
achievement would capture the current situation
well. Goal achievement rules determine
placement subgoals and primitive camera actions
contributing to the achievement of the selected

The whole system,
event-driven manner.

camera

camera placement goal. Each time the camera script
is executed, a cycle of executing the goal selection
and achievement rules is performed. The cycle is
finished by executing primitive camera actions,

3. Formal Specification of Cinematography

This paper tries to encode cinematography in a
formal language. So, we define rigorously basic
concepts and principles of cinematography necessary
for formal encoding. Cinematography are
reviewed based on Arijon [1], a comprehensive manual
for camera placement rules, Arijon describes camera
placement formulas for various situations, e.g.
person moving in the scene, one person entering the
scene, three persons talking,
and more than four persons talking, Mathematically
speaking, a camera placement is defined in terms of

rules

one

two persons talking,

two parameters, i.e, the position and the
orientation of the camera, But the position and
orientation parameters are toco low level to be

meaningfully controlled in camera placement rules.
So, Arijon uses somewhat vague but more intuitive
high level parameters to specify camera placements,
In short, camera placement is specified in terms of
the line of interest, camera angle, and camera
distance.

3.1 The line of interest

The most important concept is the line of interest,
because camera angle is specified relative to it, In
Arijon[1], the line of interest is taken to be the
line of sight in the case of a single actor. In the
case two persons interacting, e.g. talking, the line
of interest is taken to be the line connecting the
heads of the two persons, The line of interest is
basically the line that the camera, that is, the
audience, would want to observe. Typically, some
actors on the line of interest are given more camera
attention than are other actors. It is usually
determined by the roles of the actors., Also, the
audience would sometimes want to observe the whole
situation from a neutral point of view to establish
the context of the current event. The line of
interest is defined even when two persons do not
look at each other. For example, when two persons
are talking while looking at the same direction, the

- 57—

line connecting the heads of the two persons is the
line that the audience would like to observe.

3.2. Camera angles

in file, multiple used to support
multiple camera placements when the transition from
one placement to another is discontinous, that is,
when the camera position or orlentation is jumped to
another one. In such cases, it is physically or
temporally not feasible to use a single camera. So,

cameras are

caperas to be used to capture a scene are placed at
predetermined angles.

The Line of Interest

X

Ly

Lot Fuxalbel

LoL
Lttt Rigsbaml \/ RighErem]

\/ RightParallel

Apex

Figure 2! Seven camera angles

Arijon suggests that we posit seven kinds of camera
angles relative to the line of interest between
actor A and actor B, as shown in figure 2, The line
of interest divides the plane into two sides, The
line of interest has no direction, because it simply
connects the two primary actors, But for the purpose
of dividing the plane into two sides, the line of
interest between A and B is viewed to have the
direction from A to B. The two side are considered
the left and right sides, respectively, from the
viewpoint parallel to the line of interest. The
cameras in figure 2 are all placed on the right
side. There are also seven kinds of
placements on the left side.

camera

Let LOI be the unit directional vector corresponding
to the line of interest lying between actors A and
B. Camera Cam is placed at parallel angle with
actor X (A or B) on the side Side (left or right)

with respect to LO! (camera_placed at{ Cam, LOI,
Side, parallel, X)) if the camera points to actor
X from the side Side with its direction
perpendicuiar to LOI. Camera Cam is placed at apex
angle with A and B on the side Side with respect to
L0l (camera_placed_at(Cam, LOI, Side, apex, A, B))
when the camera points to the middle of actors A and
B from the side Side with its direction
perpendicular to LOl. Camera Cam is placed at
external reverse angle from A to B on the side Side
with respect to LOl { camera_placed at{Cam, LOI,
Side, external, A, B)) when the camera points to
actor B from behind A on the side Side with respect
to LOI, so that actor B is covered fully and actor A
is covered partially. Camera Cam is placed at
internal reverse angle from A to B on the side Side
with respect to LOI (camera_placed_at{Cam, LOI,
Side, internal, A, B}) if the camera points to B
from between A and B on the side Side with respect
to LOI, so that only actor B is covered fully.

A given side is divided into two areas,
containing A and the other containing B. The two
regions are called the left and right regions from
the viewpoint of a camera positioned in the given
side. Hence, as shown in figure 2, cameras placed on
the side of A are called left cameras, and camera
placed on the side of B are called right cameras.
So, when camera_placed_at{ Cam, LOI, Side,
parallel, A) holds, the camera Cam is called the
LeftParallel, When camera_placed_at{ Cam, LOI, Side,

one

parallel, B), the camera Cam is «called the
RightParallel. When camera_placed at{ Cam, LOI,
Side, external, A, B) holds, the camera Cam is

called the LeftExternal., When camera placed_at{ Cam,
LOI, Side, external, B, A), the camera Cam is called
the RightExternal. Similary for the Leftlnternal and
the Rightlnternal.

virtual

3.3, Use of cameras in

environments

multiple

In virtual envirionments, there are no physical or

geometric constraints on camera movement. So, any
kind of camera placement can be immediately
achieved, But if that happens, users would be

confused because they are accustomed to films where
camera movement is constrained. So, even for virtual
environment, we want to follow ordinary constraints
on camera movement and use multiple cameras for

multiple placements, It is advantageous in two

58

aspects. First, the process of encoding camera
placement rules becomes easier because there is
correspondence between cinematography
manuals and encoded formulas, Second,
multiple good for real-time camera
control. If we use 2 single camera, then the
position and crientation of the camera should be
computed scratch time the
placement transition occurs. But if we use multiple
cameras, the new placement for a given camera may be
obtained by wmodifying the
incrementally.

one-to-one
maintaining
cameras is

from every camera

previous placement

For a given line of interest, some or all of these
seven placements can be used.
placements are to be used, they are initialized by
assigning the default position and orientation to
each placement. To do so, we use camera actions of
the form

When some camera

initialize_camera(Camera, LOI,
A, B).

Side, CameraAngle,

For example,

initialize camera(Cam, LOI, right, external, A, B)
initializes camera Can to a typical external angle
from A to B on the right side with respect to LOI.
Initiaiized camera are effective when they are
activated. So we use camera actions

activate{Cam} and deactivate(Cam)

to activate and deactivate camera Cam,

3.4. Camera actions

Camera actions are classified into primitive actions
and complex actions. Primitive actions simply change
the position and crientation of a given camera by a

increment each they are executed., We use
the following primitive camera actions.

certain

wove{Cam, forward, D). move camera Cam along its
forvard axis Dir by distance D. Similarly for
move(Cam, up, D) and move(Cam, left, DJ.

pan{Cam, Ang): pan (rotate about the vertical axis)
camera Cam by angle Ang.

tilt{Cam, Ang): tilt {rotate about the horizontal
axis) camera Cam by angle Ang.

roll(Cam, Ang): roll (rotate about the forward axis)

camera Cam by angle Ang.
Complex actions are names of procedures that
achieve placement goals, e g,
camera_placed at{ LeftExternal, LOI, Side, external,
midium, A, B). Complex camera actions are expressed
in the form of

camera

Lo, Side,
CameraDistance, A, B).

place_camera(Cam, CameraAngle,

For example, place camera(leftExternal, LOI, right,
external, wmidium, A, B) is the action that places
camera LeftExternal at external angle from A to B
with mididum distance on the right side with respect
to LOI. Complex actions are implemented by a
combination of primitive actions.

t

4. Encoding cinematography rules

Every client system in a 3D chatting system has its
own user, which has logged in the client system. The
camera script is shared by every client system. But
the user of each client system has a different role
in a chatting situation, For example, one user would
be a speaker, and another user would be a hearer

The camera placement rules for the speaker are
distinct from those for the hearer, So, even though
the same camera script is used, different part of it
would be executed depending on the role of the user.
Ve show some of the goal selection and achievement
rules used in our 3D chatting system.

Both goal selection and achievement rules are
specified in the form of production systems. A
production system is a sequence of conditional

actions, which are written as

Cl => Al:
C2 => AZ:
€n => An

Every time a production system is activated, the
conditions are tested in sequence, and the first
action whose condition is true is executed,

4.1 Goal selection rules

We describe an example camera script in an informal

— 59—

language.

script{capera) = {
Let Group be the set of other avatars:
Let User be the avatar of the user that
client system:

uses the

(1)} User appeared in the conversation room less
than OverviewDur frames ago
=>camera_for_overview(User, Group,
OverviewDur);

{2) User is speaking to avatar B
=> camera_for_speaking(User, B, TalkCycle):

(3) User is hearing avatar B
=> camera_for_hearing(User, B, TalkCycle};

The above camera script describe three situations
and the camera placement goals for them, Rule (1)
states the camera placement goal (
camera_for_overview{User, Group, OverviewDur)) to
be achieved and maintained when the user first
appears in the conversation rcom. OverviewDur is the
time interval during which the user is supposed to
overview the new situation he has entered., The time
interval is counted as the number of frames, which
is incremented every time the camera script is
executed, Rule {2) states the camera placement goal
for the situation in which the user is speaking to
avatar B, Similarly for rule (3). The above rules
describe what to do when, and so are called goal
selection rules,

4.2 Goal achievement rules

Here we define the camera placement goals mentioned
in the goal selection rule The goal
camera_for_overiview() is defined as follows.

above,

camera_for_overview(User, Group, OverviewDur) = {
Increment frame_count modulo OverViewDur:
(1) temporal phase(frame_count, OverviewDur,
0, 1/72) &&
camera_placed_at(LeftExternal, LOI,
right, external, longshot,
User, Group} => nil;

(2) temporal_phase(duration_count, OverviewDur,
0, 1/2) =
place_camera_at{LeftExternal,l0l, right,
external, longshot,
User, Group):

(3) temporal_phase(frame_count, OverviewDur,
1/2, 1) &&
camera_placed_at(LeftExternal, LOI, right,
external, ful Ishot,
User, Group) => nil

(4) temporal_phase(frame count,
Overviewbur, 1/2, 1)
=>place camera_at{Lef{tExternal,L0l, right,
external, fullshot,
User, Group):

The above rule says that camera_for _overview(} is
achieved by doing different actions depending on
where the current time frame count falls within
OverviewDur. Roughly speaking, camera_for overview()
is achieved by taking a long shot at external
reverse angle from User to B initially and then by
taking a full shot at external reverse angle from
User to B later. These two shots are intended to
show the whole situation of the conversation room to
the user which has entered the room. Incrementing
frame_count modulo OverViewDur gets the remainder
of dividing frame_count by OverViewDur. Predicate
temporal_phase(frame count, OverviewDur, 0, 1/2)
means that frame_count falls within the first half
of OverviewDur. In other words, it means that the
current frame falls within the first half of cycle
period OwverViewDur. Rule (1) says that no camera
action is performed if camera_placed_at(
LeftExternal, LOI, right, external, Tengshot, User,
Group) is true in the first half of the period. Rule
(2) says that if camera placed at(LeftExternal,
LOI, right, external, longshot, User, Group) is not
true during the first half of the period, camera
action place camera_at(LeftExternal, L0I, right,
external, fullshot, User, Group) is executed. Rules
(3) and (4) state the similar things with respect to
the second half of the period. Place_camera() is a
complex camera action which is achieved by a
combination of primitive camera actions.

Rule (1) is executed every frame, because the goal
condition of rule (1)

camera_placed_at{LeftExternal, LOI, right, external,
longshot, User, Group)

may be false in the current frame even though it was

true in the previous frames. In that case, rule (2)

is fired, and the camera action to make the

condition true is executed, All the camera actions

achievement rule for camera

mentioned [the goal

goat
camera_for_overview{User, Group, OverviewDur)

are activated when the
conditions are (true.

corresponding triggering
Each action is supposed to
contribute to the achievement or maintenance of the
camera goal

camera_for_overview(User, Group, OverviewDur).

The goal is achieved when one of the conditions in
the rule whose actions are nil.

This style of program is called "teleo-reactive”
program {5}, because what to do for achieving a
given goal is determined in reaction to the current
situation, and whatever the program deoes, it is to
achieve the given goal, that is, the
conditions whose actions are nil, Teleo-reactive
programming is appropriate for camera placement
goals, because camera actions are sensitive to the
behaviors of avatars, However, goal selection rules
not teieo-reactive programs, but simply
reactive, though they are written in the same
production system. It is because there are no
particular conditions in a goal selection rule
toward which all actions in it are striving to

one of

are

achieve,

Let us see how the second camera goal in the goal
selection rule

capera_for_speaking{User, B, TalkCycle)

is achieved, Parameter TalkCycle is the cycle period
in which the camera captures various aspects of the
situation in sequence. When the cycle period is
expired, the camera returns to the initial point in
the sequence and repeats the camera actions assigned
to the cycle period, The second camera goal is
defined as follows,

camera_for_speaking(User, B, TalkCycle) = {

Increwent frame count modulo TalkCyclel

temporal_phase(frame_count, TalkCycle, 0, 4/6)
& camera placed at(LeftExternal,LOI, right.
external, closeup,
User, B) => nil:

temporal _phase(frame_count, TalkCycle, ©, 4/6 ;
=> place_camera(LeftExternal LOI, right,
external, closeup,
User, B):
temporal_phase{ frame count,
)
S&camera_plaed at{ LeftExternal, LOI, right,
external, closeup,
User, B) => nil:

TalkCycle, 4/6, 56

temporal_phase(frame_count, TalkCycle, 4/6, 5/8)
=> place_camera(LeftExternal, LOI, right,
external, closeup,
User, B):

temporal_phase(frame_count, TalkCycle, 5/6, 1)
&8 camera_placed_at{ ApexCamera, LOI, right,
apex, closeup,
User, B) =D nil;

temporal _phase(frame_count, TalkCycle, 5/6, 1)
=>place_camera(ApexCamera, LOIi, right
apex, closeup, User, B):

}

Let us see how the third camera goal in the goal
selection rule
camera_for_hearing(User, B, TalkCycle)

is achieved when hearer User is hearing actor B
speaking. The line of interest goes from User to
speaker B. As in camera_for_speaking(), during the
first 4/6 of TalkCycle, is placed at
reverse angle from the hearer User to the speaker
B. to capture the speaker. During the rest of the
time, the camera is placed at reverse angle from the
speaker to the hearer, to capture the speaker, and
then is placed at apex angle with the hearer and the
speaker to establish the whole situation from a
neutral point of view.

the camera

- 61—

9. Conclusions

In this paper, we have encoded camera piacement
rules for 3D chatting in virtual environments based
on cinematography rules developed by film producers

We have designed a formal language for the encoding:
we carefully devised predicates for camera placement
and camera actions needed to specify rules or
procedures to achieve desired camera placements for
various situations in which users particiapte, The
rules are encoded by taking into account
context-dependency and user-dependency of
cinematography in virtual enviromment. In the
present study, cinematography rules for the
interaction of multiple people. e.g three persons
talking, are not vet encoded. It requires a way to
compute the line of interest for such situations.
This problew needs a further systematic Inguiry into
the nature of heuristic knowledge of traditional
cinematography.

6. Reference

{11 D. Arijon. “Grammar of the Film Language”
Communication Arts Books, Hastings House, Publishers, New
York, 1976.

[2] D, Christianson, S. Anderson, Li-wei He, D, Salesin,
D. Weld, and M. Cohen. “Declarative Camera Control for
Automatic Cinematography”, AAAL ‘96.

f3) Li-wei He, Michael Cohen, David Salesin. "The Virtual
Cinewatographer: A Paradigm for Automatic Real-Time Camera
Control and Directing” SIGGRAPH ‘96

[4] Joseph V. Mascelli. "The Five C's of Cinematography”,
Cine/Grafic Publications, Hollywood, 1965,

[5] Nils J. Nilsson, Stanford University, "Teleo-Reactive
Program for Agent Control”, Journal of Artificial
Intelligence Research (1994}, 139-158

-2 —

