A Method for Computing the Network
Reliability of a Computer Communication
Network

O
Kyung—Jae Ha, Ssang—Hee Seo
Dept. of Computer Engineering, Kyungnam University

<ABSTRACT>

The network reliability is to be computed in terms of the terminal reliability. The
computation of a termial reliability is started with a Boolean sum of products expression
corresponding to simple paths of the pair of nodes. This expression is then transformed
into another equivalent expression to be a Disjoint Sum of Products form. But this
computaion of the terminal reliability obviously does not consider the communication
between any other nodes but for the source and the sink. In this paper, we derive the
overall network reliability which is the probability of communication that each node in
the network communicates with all other remaming nodes. For this, we propose a
method to make the SOP disjoint for deriving the netwok reliability expression from the

system success expression using the modified Sheinman’s method. Our method inciudes

the concept of spanning trees to find the system success function by the Cartesian

products of vertex cutsets.

1. Introduction

System reliability evaluation is basic step in a
reliability studies. Therefore, derivation of the
symbolic reliability expression in a simplified and
compact form for a general system is very
desirable. In system relaibility analysis, it is
customary to represent the system by a
probabilistic graph in which each node and each
branch has a probability of being operative. A
very common example of a general system is the
computer communication networks such as the
internet. The most common problem which arises
in the analysis of such a network is to compute
in a efficient and systematic manner the network

reliability between each of the all node pairs.

In the graphical representation of a computer
network(CCN),
communication links and

communication specific
computers are
represented as branches and nodes of the graph.
The terminal reliability, a commonly used measure
of connectivity, is the probability of obtaining
service between a pair of operative centers, called
souce and sink, in terms of reliability for each
communication link/node in the network. This
calculation obviously does not consider the
communication between any other nodes but for
the source and sink. Here, we find the probability
of obtaining a situation in which each node in the
network communicates with all other remaining
communication nodes. In case that this probability

- 202 -

19984 BRYE(0|Ho3s] FAHSEUECEE

called Network Reliability of a CCN is to be
calculated using the concepts of terminal reliability
only, one can proceed by finding all possible paths
between each of the n(n-1)/2 node pairs. Since
this is impractical for graphs with a large number
of nodes, alternative methods have been proposed
in the literature.[1][2]

The Boolean algebra method is a power tool for
reliability analysis because it has advantages over
other techniques as summarized in [3]. Several
algorithms for the generation of disjoint products
are known but they do not obtain a minimal
formula.

In the Boolean algebra method, following two
factors determine the quality of algorithms for the
generation of disjoint products[4];

- computational efficiency,

- resulting number of disjoint products.

In this paper, we propose an alternative
method to obtain the SDP using the Sheinman’s
method which is used to simplify the Boolean
function[5]. We modify the original algorithm in
order to transform a canonical function to a SDP
expression.

Our method includes the concept of spanning
trees to find all possible paths between each of

the all node pairs.[6]

2. Derivation of a system success function
from a CCN

The first step in most reliability evaluation
techniques is to enumerate all minimal paths
between each of the all of node pairs in the
probabilistic graph.

A following assumptions are made with respect
to the probabilistic graph.

a. All nodes of graph are perfectly reliable.

b. Links are half- or full-duplex. The network is
modeled by a undirected graph.

c. Link states are s-independent. Failure of one
link does not affect the probability of failure of
other links.

d. Each link and the network have only 2 states
good, the operating state and bad, the failed state.
e. The network is free from self loops and

cycles.

In any general network, the network reliability
expression is usually derived from the graph of
the network into two steps.

In the first step, the success paths or cutsets
are enumerated and success expression is formed
by taking union of them. In the next step, this
success expression is modified to give an
equivalent canonical form or sum of products
expression in which all product terms are
mutually disjoint.

In the first step, one can proceed by finding
all possible paths between each of the n(n-1)/2
node pairs for computing the network
reliability [7] Since this is impractical for graphs
with a large number of nodes, we use the
concept of spanning trees in [6].

From the definition of a spanning tree, any T,
will link all n nodes of G with (n-1) branches
and represents the minimum interconnections
required for providing a communication between
all nodes. For this, the backtrack programming
methodl(8] or the
transformation[13] are wused to find all the

elementary tree

spanning trees of a graph. This approach is
difficult to computerize, so we borrow another
method in Ref.[6] which uses Cartesian products
of (n-1) vertex cutsets C; whose elements arc the
branches connected to any of the(n-1) nodes of
G. Thus,

el

XCh1 = X G

il

C=CixCex. . cme===(1)
Where C is a sct of subgraph of G with (n-1)
branches. It has been proved[9] that any circuit of
G with (n-1) branches will have an even number
of identical appearances in C. If these terms are
recognized, then deleted from C, the normalized
Cartesian
subgraphs which do not repeat an even number

product C° contains only those
of times and are of cardinality (n~1). From the
concept of spanning tree, C’ is thus, the set of all
Ti’s of a connected graph G.

Finally, We can get a Boolean expression of the
system success function by union operations on
the elements in C",

<Example>

In order to enumerate the spanning trees for

- 203 -

19984 st=UE|o|rjo{sts] FHseUtr=EY

a bridge network in Fig. 1, the three vertex
cutsets can be obtaind. They are:

Ci =(x1, x2) , C2 = (x4, x35), C3=(xa, X3, X4)
n

2

Fig.l a network example

By using (1), C becomes as follow.

C = (x1, x2) X{Xs, X5) X (x1, X3, X4)
= (XiXqa , X1X5 , XoXa, X2Xs) X (X1, X3, X4)
= (X1X3X4 , X1X3X5 , X1X4X5 , X1X2X4 , X2X3X4 ,

X1X2X5 , X2X3X5, X2XaXs)

Since no term in (2) has an even number of
identical appearances, C” is the same as C. The 8
elements of set C° thus represent 8 different
spanning trees.

We can obtain the system success function:

S= xiXaxa U x1X3xs U X1XaXs U X1Xoxq U XoX3xa U

X1X2X5 U X2X3X5 U X2X4X5
3. Computation of the network reliability
3-1. The Boolean Algebra method

In Sec. 2, we first derived the Boolean sum of
products expression for the system success
function as a pure Boolean algebraic statement. If
it is to be interpreted as a probability expression,
certain modifications are necessary. The
modifications are necessary because the following
relation for expressing the probability of the union
of n events is true only if the events are
mutually exclusive

P{EiU E; U .. U En) = P(E1) + P(Eg) + ... +

P(En)

For example, consider a simple Boolean
expression,

S = XXz + Xi1X3X4

This function is represented on a Karnaugh map
in Fig. 2. This map can be reinterpreted as a

probability map where Xi, Xz, X3, X4 represent four

primary events with individual probabilities of
occurrence pi1, Dz, etc. and individual probabilities
as qi, qz etc.

> -

E‘ Ez E:) (=%
X‘
E!)

Fig.2 Karnaugh map for S= xiX2 + X1x3X4

On this basis, therefore, the probability of event
S is the algebraic sum of five elements defined
by the five locations containing a 1 in the
Karnaugh map, ie.,

P(S) = PAE) + Pu(Ey) + P(Es) + P{Es +

P(Es) e (4)

where,

PA(E1) = pipeqsps, P(E2) = pipagsqs, PdE3) =
pipzpaps, P(E4d) = pipapnqs, Po(Es) = pigapsps
This equation could have been obtained directly

from the original Boolean expression by
converting the same into its canonical form as:

S = xixe f oXiXaXe = xaXe(Xatxa Mxatxs) o+
XiXsXa(Xo*+X2) | or

S = X)XZXS'X4'+ X;Xzzx:;vxa+ X1X2X3Xq+ >(1X2X:;X4v+

XiXeXsXe mmmmm—e- (5)

There is now a one-to-one correspondence
between the terms of the two equations. However,
it must be realized that one can not use the
original Boolean expression to derive Pr(S)
directly, as

PA{S) # pipz + pipspa

In terms of the probability map interpretation,
the modification is necessary to compensate for
the fact that the groupings of the xixz and XiXsxs
terms are not disjoint. In this example, xiX2X3X4 is
common to both. An alternative solution therefore
would be to modify the Boolean terms until they
represent a disjoint grouping and one possibility
in this case is:

Sa = XiXe + XiX2 X3%s
Which leads directly to
P«S) = PASa) = pip2 + p1Q2DsDs

For computing a network reliability in this
example, the path reliabilities of xi1, X2, X3, X4 are
given that p1=0.9, p2=0.8, pa=0.7, ps=0.6,

04 -

19984 S=HE|DILIOjEE] FASGSUREEY

respectively. In this case, The network reliability,
Rs, calculated by (5) or (6) is Rs= 0.7956.

(5) thus
represent a valid to full canonical form and can

The above Boolean expression
still be interpreted as a probability expression.
The key problem of this Boolean algebra method
thus is to transform the Boolean expression of
the system success function to a form such that
all terms are mutually disoint. Several methods
for the generation of disjoint products are
known.[10,11,12] Most of these methods are based
on the concept that two conjunctive terms T
and T2 will represent disjoint grouping if there
exists at least on literal in a T such that the
same literal occurs in its complemented form in
Ty. Therefore these techniques of generating
disjoint terms require step by step testing for
disjointness.

3-2. Our method to obtain the SDP expression

In the Schinman’s method, the

canonical form is prerequsite for the simplification

original

process and its minterms are designated by
decimal numbers. This method is principally based
on the Shannon’s expansion theorem that a
canonical Boolean function is recursively expanded
into the form around variable xi
fexiofi lart xi o fi o

The algorithm is as follows[3]:

Step 1)
representing the given function in a column.

Arrange the decimal numbers
Step 2) Divide the decimal numbers into two
columnar groups, one headed with xi and
one headed x1. The xi column contains the
numbers of the original function which are
smaller than 2" - the binary weight of xi - and
the x1 column contains the numbers which are
equal to or greater than 2° l, first subtracting
2""! from each.

Step 3) Include a third column, headed by a
dash to indicate the redundancy of xi and xll,
consisting of the numbers which are common to
columns x; and xi1. Check the corresponding
numbers in columns xi and x; to record the fact
that they are redundant. If any of the numbers in
the dashed column have been previousely checked

n both the x; and X1 columns, they should also
be checked in the dashed column.

Step 4) Examine each column. If any column
consists of only checked numbers, eliminate the
column entirely. Each of the columns must now be
expanded about X», X3 , .. , X, respectively by
repeating the above steps.

Step 5) When the function is expanded about the
final variable X., the residues must be 0. At this
step, the prime implicants may be determined by
simply tracing a path back to the start and
reading the appropriate columnar headings.

Step 6) Draw the prime implicant chart to
reduce the number of implicants so as to obtain a
simplified Boolean function.

Step 7) Stop.

The strategy used in our algorithm is to
modify the above Scheinman’s algorithm in which
the checked terms are not taken over
subsequently in the process in order to obtain the
disjoint expression.

Qur algorithm is as follows:

Step 1) and Step 2) are same as above.

Step 3) Same as above but the checked terms
are not taken over subsequently in the process
for vaniables Xz, X3, .. . Xa

Step 4) and Step 5) Same as above.

Step 6) Stop.

In our modified algorithm, the prime implicant
chart is not needed because all the implicants

obtained are mutually exclusive.
3-3. Application of the proposed algorithm

To compare our method with another method
in Ref.[6], we consider the same bridge network
in the example of Fig.l. The system success
function which is obtained using the concept of
the spanning trees is the same as (2) in Sec. 2.
We apply our algorithm on the system success
function to obtain the simplified network reliability
expression in a sum of disjoint form. Fig. 3
shows the application of the proposed algorithm.

In this example, the full cancnical form of the
system success function is:

- 205 -

19984 $HRUEln|Ciolgts] £H U EEST

x1 x1 _
"o a "
13 v s 13
14 v 6 14
15 v 7 15
s
10
(RN
13 v
a v
15 v
|] 1 i
Xz Xz - xz
3 k) 3
E 2 s
6)
7 7
!]
xXa* Xa - xut x3 -
av 1 3 xa 3w 1 3
2 ‘_) 1 2
2 3 v
Xa® Xa v Xa x4 xa x4 xa x4
1 ° 1 1 o v o 1
| t | | ! | | |
x x x x5 xs x5 xo x5
' ' ' ' ! t ['
o ° o ° o o o z

Fig. 3. Application of the proposed algorithm

S* (X1, X2, X3, X4, X3) =
2¥11,13,14,15,19,21,22,23,25,26,27,29,30,31)
The disjoint

reliability expression resulted from the application

expression or the network
using the proposed algorithm is :
S¢ = X2XaXs U X1X2 Xa¥5 U XoXaxXaxs U xpXaxs x5U

X1X2 XaXa X3 U X1X2 X3XaxXs U X1XeXs Xa X5U

XIX2X3'X4X5'
Here, it is given that pi=0.9, p2=0.8, p3=0.7, ps=0.6
and ps=0.5 . These represent the path reliabilities
of X1, Xz X3, X4, X5 respectively.

From (7), the network reliability expressioh

Rs = popaps*pigepaps*+pepspags+pepsdapst
P1Q2P3Q4Ps ¥ P1d2P3paQs+ P1P3gqaq4pPs+ pep2aspas
The network reliability becomes then, Rs = 0.7450
which is the same as in Ref[6] although the
number of terms in the reliability expression is
the same as that in [6].

For the CCN having equal probabilitys of
survival p for each communication link, (7)
simplifies to:

R, = p’ + p’-p) + p’(1-p) + p'I-p) +
p’(1-p)® + p’(1-p)* + p*(1-p)* + p*(1-p)
8p3— 11 p4 +4p5

In deriving (8, we have assumed perfect
nodes. As computer outage account for as much
as 90% of failure in most CCN's, we have to
consider the reliability of nodes as less than 1 in
in such situations. In such a case, (8) is to be
multiplied by a factor (pniPn2Dn3Pnas), where pui
represents the reliability of node n; [15].

4. Conclusion

In this paper, we derive the overall network
reliability which is the probability of
communication that each node in the network
communicates with all other remaining nodes. For
this, we propose a method to make the SOP
disjoint for deriving the netwok reliability
expression from the system success function
using the modified Sheinman’s method. A simple
example is worked out to illustrate the our
concept.

The proposed algorithm is applicable for large
number of nodes and is easy to be implemented
on the computer because of the generality of the
Schinman’s method. Our algorithm for obtaining
the sum of disjoint expression does not require
step by step testing for disjointness and only
require operations on the decimal numbers
iteratively, although the number of terms in the
reliability expression is the same as that in [6].

We are implementing the algorithm on the
computer and tryving to apply it to the various
benchmark networks such as in [2] for giving the

superiority of our method.

<REFERENCES>

{1} KK. Aggarwal, Reliability Engineering,
Kluwer Acaademic Pub., 1993.

[21 S. Soh, S. Rai, "Experimental Results on
Preprocessing of Path/Cut Terms in Sum of
Disjoint products Technique”, IEEE Trans. on
Reliability, Vol. R-42, no. 1, pp. 24-33, Mar. 1993.
{3] M.O.Locks, "Recursive Disjoint Products: a
Review of Three Algorithms”, IEEE Trans. on
Reliability, Vol. R-31, No. 1, pp.33-35, Apr. 1982.
[4] K. D. Heidtmann, ” Smaller Sums of Disjoint

- 206 -

19984 SR YE|o|C|o{3e] FHSadREE

Products by Subproduct Inversion”, IEEE Trans.
on Reliability, Vol. R-38, No.3, pp. 305-311, Aug.
1989.

[5] A. H. Schinman, "A Method for Simplifying
Boolean Functions”, The Bell Systems Technical
Journal, pp. 1337-1346, Jul. 1962.

[6] K. K. Aggarwal, S. Rai, "Reliability Evaluation
in Computer-Communication Networks”, IEEE
Trans. on Rehability, Vol. R-30, No.l, pp. 32-36,
Apr. 1981.

[7] R. S. Wilkov, “Analysis and Design of
Reliable Computer Networks”, IEEE Trans. on
Communications, Vol. COM-20, pp. 660-678, Jun.
1972.

[8] B. Carre, Graphs and Networks, Clarendon
Press, Oxford, 1979.

[9] M. Piekarski, “Listing of All Possible Trees of
a Linear Graph”, IEEE Trans. on Circuit Theory,
Vol. CT-12, pp. 124-125, Mar 1965.

[10] J. A. Abraham, "An Improved Algorithm for
Network Reliability”, IEEE Trans. on Reliability,
Vol. R-28, pp.58-61, Apr. 1979.

{111 M. O. Locks, "A Minimizing Algorithm for
Sum of Disjoint Products”, IEEE Trans. on
Reliability, Vol. R-36, pp.445-453, Oct. 1987.

{12 TF. Beichelt, L. Spross, "“An improved
Abraham-Method for Generating Disjoint Sums”,
IEEE Trans. on Reliability, Vol. R-36, pp.70-74,
Apr. 1987.

[13] N. Deo, Graph Theory with Applications to
Lngineering and Computer Science, Prentice Hall,
1974.

[14] S. Rai, K. K. Aggarwal, "An Efficient
Methods for Reliability Evaluation of a General
Network”, IEEE Trans. on Reliability, Vol. R-27,
No.3, pp.206-211, Aug. 1978

[15] K. K. Aggarwal, J. S. Gupta, K. B. Misra,
“A Simple Method for Reliability Evaluation of a
Communication System”, IEEE Trans. on
Communication, Vol. COM-23, pp.563-565, May
1975.

- 207 -

x|
]

