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ABSTRACT

One major limitation on the efficiency of parallel computer designs has been the prohibitively

high cost of parallel communication between processors and memories. Linear order concentrators

can be used to build theoretically optimal interconnection schemes. Current designs call for

building superconcentrators from concentrators, then using these to recursively partition the

connection streams OflogzN) Jmes to achieve point-to-point routing. Since the superconcentrators
each have O(N) hardware complexity but O(log:N) depth, the resulting networks are optimal in
hardware, but they are of O(logzN) depth. This depth is not better than the OflogzN) depth
Bitonic sorting network, which can be implemented on the O(N) shuffle-exchange network with
message passing. This paper introduces a new method of constructing networks using linear
order concentrators and expanders, which can be used to build interconnection networks with
O(log2N) depth as well as O(NlogzN) hardware cost.(All logarithms are in base 2 throughout

paper).
1. Introduction

In order to route N streams of information
efficiently in a parallel computer, it is necessary
to construct a network with N disjoint paths
parallel
computing can employ a wide range of parallel
algorithms and data structures, the most powerful
interconnection

from source to destination. Since

scheme is one that can
accommodate arbitrary source-destination pairings
for all N information streams. One way to build
such an  interconnection is to use a
superconcentrator to divided the input stream into

two output parts, then recursively divide each

part of the output with two additional
superconcentrators, and so on until each steam
has been connected to its specific destination[2,3]).
Leighton[5) showed that a simple, fast routing
algorithm can be used to compute the routing of
the links through a concentrator-based splitter
network. Therefore the remaining task is to
determine the exact structure of a practical sized
concentrator.

To develop a O(logN) depth, O(NlogN)
hardware complexity network, one proposed
solution is the AKS sorting network[1]. This
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network uses expanders as pathways for
comparison-exchanges in a sequence of repeated
approximate halving operations. The algorithm
terminates in O(logN) time, though with a very
large constant. Another approach has been
proposed by Upfal{9],

O(logN), but it relies on packet routing, and

which terminates in

therefore doesn’t allow fixed connections to be
established from inputs to outputs. In this paper
different

achieve

method of using
O(logN)  depth

interconnection

we propose a
concentrators to
point-to-point routing on an
network with O(NlogN) hardware complexity. It
doesn’t use packet routing, so fixed connections

are established from inputs to outputs.

2. Structure of Superconcentrator

First we define a concentrator and show how
to build a superconcentrator with it. An (N,4, k)
concentrator is a two-stage connection network,
with N inputs, N outputs, at most kN links
from the inputs to the outputs, having the
property that, for every set of inputs X such that
X{£ N/2, all inputs in the set X can be
one-to-one connected to the outputs{6]. Since &
<1, this property guarantees that a stream of at
most N/2 active inputs can be connected to the
output stream along disjoint paths, while (1-8)N
of the unused inputs are disconnected from the &
N outputs[8].

In order to construct a superconcentrator from
this structure following Pippenger[4] we build a
network with N inputs and an outputs, with a
direct connection from each input to a
corresponding output. In order to superconcentrate
a set of inputs I to a set of outputs O where |
|=10l, connect any inputs in I to any output in O
that happens to be linked by the direct
connection. If III > N/2, then at most N/2 of
these inputs will fail to link using the direct
connection. These are then passed through an (N,
4, k) concentrator, while on the output side a
mirror image structure feeds the outputs. Between

these two structures, a recursion of the entire
superconcentrator structure is implemented, but
with N inputs and 6N outputs. The total
hardware cost S(N) of this structure, in terms of
the number of links, is given by:

S(N) = N + 2kN + S(8N) 1)
or, after solving the recursion (ignoring the
minor impact of restrictions on the number of

inputs to the concentrators):

S(NV) _ 2k+1 (2)

inputs

(a/q+1)N

inputs
(1/q+1)N

Fig. 1. The concentrator composed of two
different sized parts.

The concentrator built from this expander is the
union of two parts, called Part A and Part B, as

shown in figure 1. PartAisan(f—q%ql—l,k,d

) expander, Part B has | ] inputs, with

N
q+1
each input connected to q disjoint sets of the
[—EN;ql—] outputs of the expander, as shown in
figure 1. N’ is chosen so that:

Na N
Nz ZT 1+ L5 4)

As N becomes large, N'-N becomes small, so
we will assume N’=N (Gabber and Galil[7] show
how to use this fact to improve the size of the
superconcentrator slightly). For a specific range of
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values of the concentration coefficient q, as given
in equation 5 below, this structure is an (N,

—aq

P k) concentrator. The concentration property

is guaranteed by the following version of Hall's
Matching Theorem[10].

3. Design of New Concentrator from Expander

constructed from
concentrators must have O(logN) depth. Thus,

Any superconcentrator

any interconnection network constructed from
these superconcentrators, which uses a process of
recursively subdividing the input streams, until
the destinations are reached, must use Of{logN)
successive superconcentrators. This means that
the interconnection network will have depth
O(logN).

possible to construct linear order concentrator

We show in this section that it is

structures with very large ratios of inputs to
outputs, that is, which can concentrate an input
stream into a much smaller output stream, in one
stage. In section IV. we will use this type of
structure to build interconnection networks of
O(logN) depth and ON logN)
point-to-point

hardware
complexity  for (permutation)
routing. We will also show how to construct
linear order expander type network with
arbitrarily large expansion coefficient d.

As  descrbed structure

guarantees that any input set [ can be connected

previously, this

to any output set O. Now after D recursive
within  this

superconcentrator, there can be at most

stages of superconcentration
connections from any I to any O which have
not already been achieved, where w is given by

the formula:

N _q_)D‘l ©

where ¢ is defined by the type of expander used
to construct the concentrator. By choosing D to
be sufficiently large, @ can be made arbitrarily
small. Nevertheless, as long as D is bounded, the

resulting structure will have bounded depth.

Now if we truncate the superconcentration
process after D steps, then for each input set I,
and each output set O, at most w elements of [
will fail to connect to elements of O. Instead,
these @ elements have connections to at least w
outputs not in O. Therefore the total expansion
resulting from this process is given by:

rie-fpx(in-o+o @

This formula applies as long as [Nz,
otherwise I',_|ll, and no expansion occurs. This
can be remedied by connecting each of the
N(g/q+1)D links after the stage D recursion to
(g+1/@)D outputs, as illustrated in figure 2,
resulting in an expansion given by:

romax[ Lk x(10-0), (L) %0l ®

* N
H outputs
v

%
Y,

if |Azw, or if |A<w!

¢ : concentrator

direct connection

recursive structure

. .
; direct connection ; <

4>

q+1)P
TG copies
of each
input

Fig. 2. A truncated superconcentrator with (q+1/g)D
direct connections to the outputs after D recursion.

ria(-4£1) 1 )

Now the above structure functions as an
expander, but it is different in that it is a
multistage network, unlike the bipartite expander
graph. Nevertheless, it can be used to construct a
bipartite expander graph, by replacing each of the
paths from each input node to each output node

- 368 -



19984 stmHE|D|C{oEs] EASSUE=EE

by a direct link. Since the above network is of
bounded depth and each node is of bounded
outdegree, the outdegree of the input nodes of the
resulting expander graph will also be bounded. If
the original outdegree of the nodes in the
concentration stages of the multistage network is
k, then the outdegree of the nodes in the mirror
image reverse concentrate stages is k(g+1)/q, and
with D stages each input of the resulting
bipartite expander is connected to K outpuis

where:
K=(k+1)2”x(—‘1—“;—1)n (10)

While this structure functions as an expander
with outdegree K and expansion given by
equations 8 and 9, its expansion formula is
different than for the usual expanders, and it has
the added property that the formula can be
applied for all values of |7, that is for the
range 0<|A<N. Because it is derived from a
truncated superconcentrator, we will refer to it as

a truncated superexpander.

< ! concentrator

N
$ //8 ou{puu
vos
NgP

(a+1)®
outputs

direct connection

fecursive structure
. »
direct connection
a\ v v /s
\ v

L 11 D
D& i N\ e[} commocvon ¥1¢

direct connection

Fig. 3. A halving concentrator built from a truncated
superconcentrator with single direct connections to the
outputs after D recursions.

A second structure which may be useful in
designing interconnection networks is a type of
concentrator derived from the above truncated
superconcentrator. Note that by truncating the
superconcentration process after D recursion, we
guarantee that for any choice of input set I and
output set O all but wlinks wili be completed.

Now consider a network which has the above
structure, except that only N/2 of the outputs are
to be used in the set O. That is, the network
directs the input set I to only half of the outputs.
We then add to this set an additional N{q/q+I)D
outputs, which we connect, one-to-one, with the
N(g/q+1)D outputs of the Dg concentration
recursion as illustrated in figure 3. This structure
concentrates N inputs to N/2+N(q/q+I)D outputs.
Clearly by making D sufficiently large the
number of outputs can be made to approach N/Z2
arbitrarily.

Again, as before, the multistage structure can be
replaced with a single stage bipartite network,
resulting in an outdegree similar to K in equation
11 for the above truncated superexpander. Since
each input is guaranteed to cither
superconcentrate, or appear in the N(g/q+1D
extra outputs containing at most w connections,
it must function as a concentrator. Because it is
derived from the truncated superconcentrator, we

will refer to it as a truncated concentrator.

4. Construction of Interconnection Network

Now we will show how to  buld an
interconnection network with O(logN) stages,
using the truncated concentrator. We employ this
structure as a halving network, with two exact
copies each designed to handle half of the
connections, those connecting to the outputs i in
the range 1<i{<N/2, and those connecting toc the
outputs j in the range N/2<j<N. Because of the
N(qg/q+1)D extra outputs appearing after each
recursion, after R recursions of the halving
process, the streams have increased in size from
N/2R in each of the 2R substreams to a value S
given by:

_ v g+ D°+24DF
S =N 2at1)? 1

This presents no special problem for the truncated
concentrator, since it can easily be modified to
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remove at each stage all but (N/2R)(q/q+1)D
extra outputs at the Hs recursion, at no extra
cost. Since the truncated concentrator is derived
from the superconcentrator, as the inputs are
reduced the size of the output set can be equally
reduced, plus the (N/2R)(q/gq+1)D extra outputs.
Thus at each recursion following the first stage,
the halving networks are removing a little more
than half the streams. Figure 3 illustrates the
entire process. The above process terminates after
logN stages.

tc: truncated concentrator

N

inputs

Fig. 3. An interconnection network built from truncated
concentrators with successive halving.

5. Conclusions

We  have shown that the truncated
concentrators in particular can be wused to
O(logN)  depth
network, with a total hardware complexity of O
(ANilogN).  This creates  fixed
connections from the N inputs to the N outputs,

construct a interconnection

network

it does not use packet routing, allowing repeated
use of the same connection paths as long as
connection requests do not change. Because A is
a large constant, the complexity is not within the
range of practicality, but it provides a basis for
further study. There is no clear reason to believe
that A" cannot be reduced to a practical level.
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