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This paper investigates the problem of determining optimal replacement policies for equipment
subject to failures with cyclic rates. In many situations, the system failures depend on the
operating environmental conditions that vary on time, usually with periodical manners. We use
nonhomogeneous Poisson processes whose rate functions exhibit cyclic behavior as well as a long-
term evolutionary trend to model the stochastic process of the failures when the rate of occurrence
of the failures varies periodically, for example from day to day or between seasons. In this study,
we compare optimal policies under the nonhomogeneous process with/without a cyclic component
in the failure rate function. The analytical results for various situations are presented along with

numerical examples using simulated data.

1. Introduction

The arrival pattern for system failures has been modeled as a point process. In many cases,
the observed failures of the system exhibit periodical variations corresponding to the
environmental characteristics at a site. When the rate of occurrence of system failures varies
periodically, for example from day to day or between seasons, successive system failure events are
stochastically interdependent. It seems that a nonhomogeneous Poisson process (NHPP) with an
appropriate rate function is the most plausible, general type of time-varying process for modeling
system failure events. Cox and Lewis [1] pointed out that the continuous rate functions for such
a process can be approximated to arbitrary accuracy with an exponential-polynomial function
(EPF). For an NHPP whose behavior is locally cyclic with a long term evolutionary trend, Lee et
al. [2] suggested to use an exponential-polynomial trigonometric function (EPTF) to model the
instantaneous arrival rate. The EPTF is an exponential function whose exponent is the sum of
polynomial and trigonometric components. We use an NHPP with an exponential rate function

for the system failure model. In this study, we compare optimal policies under the
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nonhomogeneous process with/without a cyclic component in the failure rate function using

Barlow and Hunter policy II [3] for periodic replacement with minimal repair at failure.

2. NHPP with EPTF-type Rate Function

An NHPP {N():t2>0} is a generalization of a Poisson process in which the instantaneous
arrival rate A(f)at time ¢ is a nonnegative integrated function of time. The mean value
function (or the integrated function) of the NHPP is defined by

1) = EING) )= J:l(z)dz for V0.

In this study, An NHPP displaying cyclic behavior is assumed to have an EPTF-type rate
function. An EPTF of degree m has the form

A= exp{ic,.z" + Asin(ax + ¢)} Q)

i=0

where: {cg,¢;,-+Cppy A, @, ¢} is the vector of unknown parameters; the first term in the exponent
of (1) is an ordinary function representing the general trend over time; and the second term is a

periodic function representing a cyclic effect exhibited by the process.

3. Barlow and Hunter policy II for Periodic Replacement with
Minimal Repair at Failure

The idea of minimal repair was introduced by Barlow and Hunter [3]. This idea is that if the
system fails, a repair can be made which does not materially change the condition of the system
from its condition immediately before failure. Under the assumption of this idea, they suggested
the replacement policy with the designation “Policy II”. If the replacement period is T, the

Barlow and Hunter policy Il selects 7T so as to minimize the total cost per unit time
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CcT)= ‘u_)ql{g EN, o)+ S,E[N,(t)]}/t .

In [3], it was shown that ElN 7 (t)J= J(T) which is the expected number of system failures
during T and

ca) =18, um+ 8 )r.@
4, Cost Behavior for Failure Processes with Cyclic Effect

The failure rate in a system generally increases, even though it may exhibit local fluctuation, as
time goes by. In this section, we investigated the cost behavior for the system failure processes

with cyclic effect using the EPTF-type rate function of the first order polynomial degree:
At) = expla + ft + Asin{at + )} 3)

where (a, f8) are the coefficients associated with the initial level and increase rate of the system
failure process respectively, and (A,,¢) are the trigonometric parameters corresponding to
amplitude, frequency and phase of periodicity of the process respectively. In (3), the phase
parameter ¢ is setto 1.5z so as to have the minimum rate at the initial point. Figure 1 shows
changes in the failure rate and expected failure number of system processes related to the EPTF-
type rate function when varying the trigonometric parameters of the rate function with fixed initial
failure-level a = 0.0 and increase failure-rate S =0.5. The figure contains in the left the graphs
which illustrate variation of the values related to the rate function with constant frequency @ =
1.0 for different amplitudes A = 0.1, 0.5, 1.0, and in the right, with constant amplitude A = 0.5
for different frequencies @ = 0.5, 1.0, 2.0. For fixed trigonometric parameters (A =0.5and o
= 1.0), Figure 2 displays the graphs for the rate functions with initial failure-level a= 0.0 for
different increase failure-rates S = 0.1, 0.5, 1.0 in the left, and with increase failure-rates f = 0.5
for different initial failure-level a=-2..0, 0.0, 2.0 in the right. Figure 1 and 2 also show the total

costs per unit time of (2) for the system failure processes with cyclic behavior corresponding to the
EPTF-type rate functions considered in these figures when using §; =1.0and §, =50. For

$; =10 and various $,’s, Table 1 and 2 contain the results which were numerically estimated
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for the optimal replace-time and minimal cost pet unit time for the rate functions considered in
Figure 1 and 2 respectively.

Next, we compared the total cost per unit time when using the EPTF-type rate function of (3)
for the failure processes with cyclic behavior to the one when using the EPF-type rate function

Ao () :
Ao (2) = explag + Bot)}. (4)

The coefficients (g, f,) of (4) were estimated with maximum likelihood for the system failure
7 processes associated with EPTF-type rate functions. Figure 3 shows the estimated EPF-type rate
and mean value functions, and corresponding EPTF-type functions. Table 3 contains the results
of maximum likelihood estimates of (&,,f3,) for the system processes related to the EPTF-type
rate functions with various parameters. For §, = 1.0 and various S, ’s, the results of total costs
per unit time are shown in Table 4 when applying the optimal replacement-times which were
estimated using the EPF-type rate functions to the cyclic processes related to the EPTF-type rate
functions. Table 5 demonstrates the percentages of cost reduction by using the EPTF-type rate

functions as compared with using the EPF-type rate functions for the cyclic processes.

5. Conclusions

It seems in many cases that the failure rate in a system generally increases over time and also
exhibits local fluctuation. For the system failure processes with cyclic effect, we investigated the
cost behavior using the periodic rate function of EPTF-type, and compared the total cost per unit
time between using the periodic rate function and using the non-periodic rate function. The
experimental results indicate that we can reduce the minimal cost per unit time by selecting the
replacement period using the periodic failure-rate function for the system failure processes

exhibited a cyclic effect.
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Table 1. Optimal replacement time (in parenthesis) and minimal cost per unit time for
various replacement costs when using EFTF rate functions of different cyclic
parameters with @=0.0 and £=0.5.

. w=10 A=05

5 A=01 A=05 A=10 =05 w=10 w=20
2472 2518 2.686 2472 2518 2.507

1S 2009 (2194 (1.305) Q@327 (2194) (1641
3992 4062 4312 3900 4062 4.047

30 (2963) (2329) (2.300) 2.554) (2329) (2.638)
5563 5618 5978 5779 5618 5.697

100 3333y  (3278) (3274) Q766) (3278)  (3.614)
8.153 8.237 8.752 8.112 8.237 8.311

200 4226) (4246)  (4.257) (4424  (4246)  (4.133)

Table 2. Optimal replacement time (in parenthesis) and minimal cost per unit time for
various replacement costs when using EPTF rate functions of different failure
constant levels and increase ratics with 4 =0.5 and #=1.0.

) @=00 £=0.5
=01 f=05 =10 =20 a=00 =20
1649 2518  3.100 0805 2518 11195
LS w2m) @i (221) (3294)  (2.194)  (1.191)
2228 4062 57719 1625 4062  14.053
O 214y (2329)  (1.383) (5211)  (2329)  (1.255)
2808 5618 8112 2560 5618 17.928
100 9283) (3278) (2212) (6.198) (3278)  (1324)
3697 8237 12520 4148 8237 22616
200 12276)  (4246) (2319) (7.193)  (4246)  (2.248)
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Table 3. Estimated coefficient values of EPF rate functions for system failure processes with
cyclic behavior corresponding to EPTF rate function.

EPTF Parameters for Failure Process Estimated EPF Coefficients
a p A W @, B
-20 01 0.5 1.0 ~2.200 0.112
20 05 0.5 1.0 -2.208 0.534
2.0 1.0 0.5 1.0 -1.814 0.978
00 01 0.5 1.0 0.000 0.107
0.0 0.5 0.1 1.0 0.000 0.500
0.0 0.5 0.5 1.0 0.000 - 0.506
00 05 0.5 0.5 0.000 0.502
0.0 0.5 0.5 2.0 0.000 0.512
0.0 0.5 1.0 1.0 0.000 0.543
0.0 1.0 0.5 1.0 —0.283 1.109
2.0 0.1 0.5 1.0 2.036 0.104
2.0 0.5 0.5 1.0 2.068 0.489
2.0 1.0 0.5 1.0 1.817 1.167

Table 4. Minimal cost per unit time for various replacement costs when using EPF rate
functions for system failure processes with cyclic behavior corresponding to EPTF

rate function.
a=00and §=0.5w=10 a=00and f=05A4=05
S, A=01 A=05 A=10 w=05 w=10 w=20
15 2.480 2.665 3.140 2.665 2.665 2.576
5.0 3.996 4.224 4.736 3.960 4.224 4.075
10.0 5571 5.672 5.983 6.015 5.672 5.805
20.0 8.153 8.256 9.088 8.200 8.256 8311
$ =00 A=05w=1.0 pf=05 A=05w=1.0
p=0.1 £=05 p=10 a=-20 «a=00 a=20
1.5 1.674 2.665 3.105 0.834 2.665  12.685
5.0 2.231 4.224 6.016 1.647 4224 14.086
10.0 2.837 5.672 8.189 | 2.604 5.672 19.134
20.0 3.700 8.256 12.830 4.214 8.256 22.644
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Table 5. Percentages of cost reduction by using EPTF rate functions as compared with using
EPF-type rate functions for system failure processes with cyclic behavior.

=004=05w0=10 a=004=05A=05
5 A=01 A=05 A=10 0=05 0=10 w=20
15 0.3% 5.5% 14.5% 7.2% 5.5% 2.7%
5.0 0.1% 3.8% 9.0% 1.5% 3.8% 0.7%
10.0 0.1% 1.0% 0..1% 3.9% 1.0% 1.9%
20.0 0.0% 02% 3.7% 1.1% 0.2% 0.0%
2=00A=05w=10 f=05 A=05w0=10
$: pf=01 p=05 p=10 a=-20 «a=00 a=20
1.5 1.5% 55% 0.1% 3.5% 5.5% 11.7%
5.0 0.1% 3.8% 3.9% 1.3% 3.8% 0.2%
10.0 | 1.0% 1.0% 0.9% 1.7% 1.0% 6.3%
20.0 0.1% 0.2% 24% 1.6% 0.2% 0.1%
a=-20A=05w=10 a=20A=05w=1.0
5 p=01 p=05 p=10 p=01 p=05 p=10
15 0.1% 3.5% 1.5% 7.8% 11.7% 14.6%
5.0 0.1% 1.3% 3.1% 0.4% 0.2% 8.8%
10.0 0.8% 1.7% 0.1% 0.0% 6.3% 2.6%
20.0 04% = 1.6% 2.3% 2.4% 0.1% 0.7%
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Figure 1. Failure rates, mean values and total costs corresponding to EPTF-type rate functions

with @=0.0 and f=10.5.
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Figure 2. Failure rates, mean values and total costs corresponding to EPTF-type rate functions

with A=0.5and &= 1.0.
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'Figure 3. Estimated EPF rate functions for system failure processes with cyclic behavior
corresponding to EPTF-type rate function of A = 0.5 and @= 1.0.
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