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Abstract

This paper proposes an opportunistic age replacement policy. The system has two types of
failures. Type I failures (minor failures) are removed by minimal repairs, whereas type II failures
are removed by replacements. Type I and type II failures are age-dependent. A system is replaced
at type II failure (catastrophic failure) or at the opportunity after age T, whichever occurs first. The
cost of the minimal repair of the system at age z depends on the randém part C(z) and the
deterministic part c(z). The opportunity arises according to a Poisson process, independent of
failures of the component. The expected cost rate is obtained. The optimal T* which would
minimize the cost rate is discussed.. Various special cases are considered. Finally, a numerical

example is given.
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1. Introduction

It is of great importance to avoid the failure of a system during actual operation when such an
event is costly and /or dangerous. In such situations, one important area of interest in reliability
theory is the study of various maintenance policies in order to reduce the occurrence of system
failure.

Barlow and Hunter [1] considered the case of periodic replacement or overhaul at times T, 2T,
3T, ... (for some T>0) and minimal repair if the system failed otherwise. They considered cost ¢,
of replacement and ¢, for each minimal repair. This model has been generalized by Beichelt [2],

Boland [3], Berg et al. [4], Sheu [5], and Sheu and Jhang [6]. These policies are commonly used
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with complex systems such as computers, airplanes, and large motor. For preventive replacements
of components of these units to be cost effective, execution has to be delayed to some moment in
time at which the unit is not required for service. Such idle momenfs can be created by many
mechanisms, e.g., by breakdowns of the other units in a series configuration with the unit in
question, and in such cases we speak of maintenance opportunities. Unfortunately, in most cases
opportunities cannot be predicted in advance and because of this random occurrence, traditional
maintenance planning fails to make effective use of them.

In one type of opportunity-based replacement models (introduced by Jorgenson et al.[7]) there
are two classes of components. Failure of components in one class creates opportunities for the
preventive replacement of components in the other. There are many variants of this model; ¢.g.,
the opportunity-creating component may or may not itself be preventively replaced, it may have an
exponentially or a generally distributed lifetime, other components may be replaced at higher costs
outside opportunities, etc. Jorgenson et al. [7] considered this type of model and provided formulas
for the operating characteristics. Sethi [8] considered the case of two independent components
with general discrete IFR distributions and showed that there exists an optimal policy of the
control-limit type. Other examples of this type of opportunity model are those given by Vergin and
Scriabin [9], Van der Duyn Schouten and Vanneste [10], and B a ckert and Rippin [11}, who used
discrete-time Markov decision chains. Berg [12] also considered a two-unit opportunity model
with continuous time and derived partial differential equations for the joint probability density
function of the ages of the components. Recently, Dekker and Dijkstra [13] consider opportunity-
based age replacement for the case of exponentiaily distributed times between opportunities. This
paper proposes an opportunity-based age replacement policy. A system has two types of failures.
Type I failures (minor failures) are removed by minimal repairs, whereas type II failures are
removed by replacements. Type I and type II failure are age-dependent. A system is replaced at
type II failure (catastrophic failure) or at the opportunity after age T, whichever occurs first. The
cost of the minimal repair of the system at age z depends on the random part C(z) and the
deterministic part c(z). The opportunity arises according to a Poisson process, independent - of
failures of the component.

In the second section the model is described. Then the total expected long-run cost-per unit time
is found. The optimal T* which would minimize the cost rate is discussed. In the third section

various special cases are included. In the last section a numerical example is given.
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2. General Model

We consider an opportunistic age replacement model in which minimal repair or replacement
takes place according to the following scheme. A system has two types of failures when it fails at
age z. Type I failure (minor failure) occurs with probability q(z) and is corrected with minimal
repair, whereas type II failure (catastrophic failure) occurs with probability p(z)=1-q(z) and a unit
has to be replaced. A system is replaced at type II failure or at the opportunity after age T,
whichever occurs first. The opportunity arises according to a Poisson process, independent of
failures of the component. Let the random variable W denote the time between successive

opportunities. W has an exponential distribution. Let E[W] denote its finite mean and g, denote
its probability density function. Let ¢, denote the cost of replacement at type II failure. Let C,

denote the cost of replacement at the opportunity after age T. The cost of the minimal repair at age
z is ¢ (C(2),c(z) ) where C(z) is the age-dependent random part, c(z) is the age-dependent
deterministic part, and ¢ is a positive nondecreasing and continuous function. Suppose that the
random part C(z) at age z has distribution Z, (x), density function /, (x) and finite mean E[C(2)].

After a replacement the procedure is repeated. We assume all failures are instantly detected and
repaired. We also assume ¢, > ¢, .

Assume that the system has a failure time distribution F(x) with finite mean x4 and has a
density f(x). Then, the failure rate (or the hazard rate) is r(x)=f(x) / F (x) and the cumulative

hazard is R(x)= jox r(y)dy, which has a relation F (x) =exp {-R(x)}, where F (x)=1-F(x). It is

further assumed that the failure rate r(x) is continuous, strictly increasing, and remain undisturbed
by minimal repair.

If T= 0, then the survival distribution of the time between successive type II failure is given by
F,(2y=exp{=[ p(x)r(x)ds}. ey

See Beichelt [3] or Block et al. [14] for derivation of this result.
Let Y,.Y,,... beiid. random variables with survival distribution F » and Y, denote the length
of the i-th successive replacement cycle for i=1,2, .... Let Ri' denote the operational cost over the

renewal interval Y,.' . Thus {(Y,.' ,R,.‘ )} constitutes a renewal reward process. If D(t) denotes the
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expected cost of operating the unit over time interval [0,t], then it is well-known that

. D) _EIR]
PR E[Yl‘]’

2)
(see, e.g., Ross [15], p.52). We shall denote the right-hand side of (2) by B(T;p).
We can get the survival distribution of Y, is givenby F, ()= exp{—J‘Oz px)r(x)dx}.
Thus, the expected length of a replacement cycle is given by
» 0 pT+w —
B =[] [ Fo(2)dagy (w)dw. 3)
Therefore, the total expected cost in a replacement cycle is
. o0 — T+w —
E[R1= [ [e,F, (T +w)+e, F (T +w) + [ h(2)F, (2)q@)r(2)dz)g, (w)dw. @

For the infinite-horizon case we want to obtain optimal T* which minimizes B(T;p), the total

expected long-run cost per unit time. Recall that

B p) ={[] le, +(c; ¢ YE, (T +w) + [} " @)F, (a(2)r(2)dz)gy (w)dw}
/L P @dagy oy, ©)
Theorem 1. If (¢, — C, ) p()r(z)+h(z)q(z)r(z) is continuous and increases to M y (M >0),

M, -EW]<c,, and f f M, ~c; ¢, YHDH@)-HD) )@V 2)dzgy (Wdw-c, >0 then there exists at

least one finite positive T* which minimizes the total expected long-run cost per unit time B(T;p)

and the expected cost rate is

B ) ={{; (e, —e, ) pT" +wyrT" +w)
+h(T" +w)q(T" +W)RT™ +WF, (T +w)g, w)dw} / j: F,(T" +w)gy (w)dw.  (6)

Furthermore, if (¢, — ¢ » ) p(2)1(z)+ h(z)q(2)1(2) is strictly increasing, then T* is unique.
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3. Special Cases

Case 1. (p(z)=, ¢(C(2),c(z))=0): Dekker and Dijkstra [13] considered this case.

Case 2.(W is degenerated at 0, p(z)=0, and ¢(C(2),¢(z)) =c(z)): This is the case considered by
Boland [3].

Case 3. (W is degenerated at 0, and ¢(C(z),c(2))=C(2)): This is considered by Berg et al. [4].

Case 4. (W is degenerated at 0, and ¢(C(2),¢(2)) =¢) : This is the case considered by Beichelt [2].

4. A Numerical Example

In the numerical analysis here we shall consider the system with Weibull distribution which is
one of the most common in reliability studies. The p.d.f. of the Weibull distribution with shape

parameter beta and scale parameter & is given by

Jij

_ Pt o bip

and the time between opportunities W is given by
gy (W)= 1>0. ®)

If an operating system fails at age z, it is either replaced with a new system with probability
()
p@=1-[ " ), ©
or it undergoes minimal repair with probability
q4(2)=1-p(z) (10

and hz)= *(Im)j:(n% xl(x)dx+c(z), (11) where 5(z)=de™ with 0<d <]l and a>0.
q(z

An algorithm for solving this opportunistic age replacement problem is given as follows:
Input. ¢,,c,,c,,6(2),6,a, f(:),1(), 8w ().
Step 1. Compute p(z), q(z), h(z) as defined by (9), (10), (11) respectively.
Step 2. Compute r(z) and F,(z) as defined by (1).
Step 3. Compute B(T;p) as defined by (5).
Step 4. Find the optimal T* to minimize B(T;p).
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Output.
T*= optimal opportunity-based age replacement time.
B(T*;p)= optimal expected cost per unit time over an infinite horizon.
Stop. End.
From the numerical results, we can derive the following remarks:
(i) some improvement can be made in the minimum cost per unit time if one allows for minimal
repair at failure;
(ii) from Table 1, the minimum cost per unit time will be reduced when the probability of minimal
repairing is age-dependent;
(iii) it can be seen that the present models are a generalization of previously known policies.

Table 1. Opportunistic age replacement policy for the Weibull distribution with
£ =2,0=10122,c, =1200,c, =1000,c, =1000, #(C(2),c(2)) = C(z) +c(z),

c(2)=0.32,C ~ N(300,60%), W ~ Exponential(%).

Dekker and Dijkstra's result

a(y) o a T B(T*p)

0 0 0 3316.8 1.338
Our results

qy) ) a T B(T*;p)
1 1 0 7494 1.663
* 1 0.00210 2170.2 0.884

0.9 0.377 0 844.3 1.562
* 0.377 0.00041 3047.7 1.238

0.8 0.3505 0 937.8 1.493
* 0.3505 0.00034 3069.9 1.250

0.7 0.3315 0 1037.7 1.441
* 0.3315 0.00030 3087.3 1.261

0.5 0.3 0 1270.1 1.370
* 0.3 0.00022 3081.9 1.281
0 0 0 3316.8 1.338

* : age-dependent ’
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